
Global Ranking by Exploiting User Clicks

Shihao Ji
Yahoo! Labs

701 First Avenue
Sunnyvale, CA 94089

shihao@yahoo-inc.com

Ke Zhou
Dept. of Computer Science

and Engineering
Shanghai Jiao-Tong University
zhouke@apex.sjtu.edu.cn

Ciya Liao, Zhaohui Zheng
Yahoo! Labs

701 First Avenue
Sunnyvale, CA 94089

ciyaliao,
zhaohui@yahoo-inc.com

Gui-Rong Xue
Dept. of Computer Science

and Engineering
Shanghai Jiao-Tong University
grxue@apex.sjtu.edu.cn

O. Chapelle, Gordon Sun
Yahoo! Labs

701 First Avenue
Sunnyvale, CA 94089

chap,
gzsun@yahoo-inc.com

Hongyuan Zha
College of Computing

Georgia Tech.
Atlanta, GA 30032

zha@cc.gatech.edu

ABSTRACT
It is now widely recognized that user interactions with search
results can provide substantial relevance information on the
documents displayed in the search results. In this paper, we
focus on extracting relevance information from one source
of user interactions, i.e., user click data, which records the
sequence of documents being clicked and not clicked in the
result set during a user search session. We formulate the
problem as a global ranking problem, emphasizing the im-
portance of the sequential nature of user clicks, with the
goal to predict the relevance labels of all the documents in
a search session. This is distinct from conventional learning
to rank methods that usually design a ranking model defined
on a single document; in contrast, in our model the relational
information among the documents as manifested by an ag-
gregation of user clicks is exploited to rank all the documents
jointly. In particular, we adapt several sequential supervised
learning algorithms, including the conditional random field
(CRF), the sliding window method and the recurrent slid-
ing window method, to the global ranking problem. Exper-
iments on the click data collected from a commercial search
engine demonstrate that our methods can outperform the
baseline models for search results re-ranking.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval—Relevance Feedback ; H.4.m [Information Systems]:
Miscellaneous—Machine learning

General Terms
Algorithms, Experimentation, Human Factors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’09, July 19–23, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-483-6/09/07 ...$5.00.

Keywords
Learning to rank, implicit relevance feedback, user clicks,
sequential supervised learning, conditional random field, ex-
perimental evaluation

1. INTRODUCTION
To a large extent, the quality of a search engine is deter-

mined by the ranking functions the search engine deploys.
The key is to design a set of features or descriptors to rep-
resent a query-document pair that are good indicators of
the degree of relevance of a document with respect to a
query. There are many data sources that are explored in
building the ranking functions. In the early days, informa-
tion retrieval systems have seen heavy reliance on exploring
textual data. For example, the feature-oriented probabilistic
indexing methods use textual features such as the number of
query terms, length of the document text, term frequencies
for the terms in the query to represent a query-document
pair [8]; the vector space models use the raw term and doc-
ument statistics to compute the similarity between a doc-
ument and a query [18]. With the advance of the World
Wide Web, a new generation of systems utilize the hyper-
link structures of Web documents, among them are those
based on PageRanks and anchor texts which substantially
contributed to the popularity of the Google search engine
[1]. The race to discover the next gold mine of data sources
and powerful features extracted from them for search en-
gines is still on-going, and much recent research has focused
on exploring user interactions with search results, i.e., user
click data, to extract relevance information [9, 10, 17, 22, 3,
4, 6].

Parallel to the exploration of new data sources, ranking
function design has also experienced a rapid development in
recent years. In the framework of learning to rank, several
state-of-the-art machine learning based ranking algorithms
have been proposed, including RankSVM [9], RankNet [2]
and GBrank [23]. Although these ranking algorithms are
quite different in terms of ranking models and optimization
techniques, all of them can be regarded as “local ranking”,
in the sense that the ranking model is defined on a single
document. Specifically, in “local ranking” the ranking score

of a document is given largely based on the feature vector
of the current document without considering the possible
relations to other documents to be ranked. For many ap-
plications, this is only a loose approximation as relational
information among documents always exists, e.g., in some
cases two similar documents are preferred having similar rel-
evance scores, and in other cases a parent document should
be potentially ranked higher than its child documents. Thus,
more advanced ranking algorithms should utilize all the in-
formation (both local and global) together, and define the
ranking model as a function on all the documents to be
ranked [14]. This may be even more true when one wants
to extract relevance information from user click data since
users’ click decisions among different documents displayed
in a search session tend to rely not only on the relevance
judgement of a single document, but also on the relative
relevance comparison among the documents displayed; and
user click sequences can be a substantial relevance indicator
of the relevance labels of the documents with regard to the
query.

Towards developing a reliable click modeling method, this
paper focuses on extracting relevance information from user
click data via global ranking, which is explored here to uti-
lize the relational information among the documents as man-
ifested by user clicks. In particular, we introduce a global
ranking framework of modeling user click sequences, and
adapt several sequential supervised methods, such as the
conditional random fields (CRF) [12], the sliding window
method and the recurrent sliding window method [5], to this
click modeling problem.

The rest of the paper is organized as follows. In Section 2,
we provide an overview of related work in global ranking and
relevance extraction from user click data. In Section 3, we
give a formal definition of global ranking, with a comparison
to the conventional learning to rank methods. In Section 4,
we illustrate why sequential correlations in user click data
are important to infer relevance information, and how the
click features are extracted to summarize these information
for the global ranking problem. In Section 5, we explore sev-
eral sequential supervised learning algorithms to the global
ranking problem; we emphasize how to adapt these methods
in respect to the ranking nature of Web search. In Section 6,
we carry out an extensive experimental study using the click
data from a commercial search engine, with the comparison
among different sequential supervised learning methods and
several unsupervised methods proposed in the literature.

2. RELATED WORK
Global ranking is an explored idea in many ranking re-

lated research. To our knowledge, the first formal defi-
nition of global ranking was given by Qin et al. in [14],
where the authors also proposed two applications of it in
Pseudo Relevance Feedback and Topic Distillation. In con-
trast to our work, the relational information between the
documents that is exploited in [14] is either document simi-
larity or parent-child relations, while in this paper we focus
on exploiting the relational information as manifested by an
aggregation of user clicks. In addition, the modified CRF al-
gorithm in [14] does not tackle directly a ranking problem,
in which the absolute relevance grades are not important,
but only the score ranks matter.

There are also a great deal of work exploring click data to
extract relevance information. For example, Craswell et al.

[4] and Dupret et al. [6] investigate several generative prob-
abilistic models for user clicks, and aim to simulate human
click behaviors in search results. However, the click features
used in their work are relative simple, and both methods
are in the framework of unsupervised learning (i.e., no hu-
man judgements are required in these methods for informa-
tion extraction). It is well-known that user clicks are inher-
ently noisy; by exploring supervised learning in click data
modeling as in this paper, we expect our click model can
reliably extract relevance information by calibrating with
human relevance judgments. Probably, the closest work to
our approach is that of Carterette and Jones [3], in which
the authors use raw click frequencies to predict the absolute
relevance labels. However, in their method the labels are
predicted independently. As discussed in the introduction,
this may not fully exploit the user click information as that
can be utilized by global ranking.

3. GLOBAL RANKING PROBLEM
Global ranking was first formally introduced by Qin et

al. in [14]. Independently developed by us, the click mod-
eling method we proposed in this paper is essentially in the
same framework of global ranking. We therefore use this
terminology for better clarification of the basic ideas.

Let x(q) = {x(q)
1 , x(q)

2 , . . . , x(q)
n } represent the documents

retrieved with a query q, and y(q) = {y(q)
1 , y(q)

2 , . . . , y(q)
n } rep-

resent the relevance labels assigned to the documents. Here
n is the number of documents retrieved with q. Without loss
of generality, we assume in this paper that n is fixed and in-
variant with respect to different queries. In the framework
of supervised learning, y(q) is assigned by human judges in
the training phase, and is determined by a ranking model in
the testing phrase.

If a ranking model is defined on a single document, i.e.,
in the form of

y(q)
i = f(x(q)

i), ∀i = 1, . . . , n, (1)

it is referred as “local ranking”. Otherwise, if a ranking
model takes all the documents as its inputs and exploits
both local and global information among the documents,
i.e., in the form of

y(q) = F (x(q)), (2)

it is referred as “global ranking”.
Apparently, most of recent learning to rank algorithms,

such as RankSVM [9], RankNet [2] and GBrank [23], are
in the category of “local ranking”. To our knowledge, the
first global ranking algorithm could be the one proposed in
[14], where the CRF [12] is modified to adapt to the ranking
problem. As we will discuss in Section 5, this modified CRF
algorithm does not tackle the ranking problem directly but
more in the sense of regression, and we will address this issue
in details in Section 5. In the next section, we will discuss
why the sequential correlations in user clicks are important
to infer relevance information, and how we can exploit them
in global ranking.

4. SEQUENTIAL CORRELATIONS AS
MANIFESTED IN USER CLICKS

We first briefly describe the user click data that are used in
our study. The data are collected from a commercial search

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 2 3 4 5 6 7 8 9 10
Position

Sk
ip

 R
at

e

Perfect
Good
Bad

Figure 1: The skip rate of a document (relevant or
irrelevant) as a function of position in the result set.

engine for a certain period of time. We first preprocess the
raw click logs to extract all the user click sessions, where
each session contains the query submitted to the search en-
gine, the documents displayed in the result set, and the click
information indicating whether a document is clicked or not,
and the click time stamps. We only examine the top ten doc-
uments in each user click session, this usually corresponds
to the documents displayed in the first page of the result
set. Furthermore, we aggregate all the user sessions that
have the same query, from which we keep the user sessions
that have the most frequent top ten documents1, and elim-
inate all the other user sessions. We call the tuple <query,
10-document list, and an aggregation of user clicks> an ag-
gregated session. In this way we can ensure that there is
an unique aggregated session for each query in the dataset.
For the purpose of experimental study, each query-document
pair is assigned a label from an ordinal set

{perfect, excellent, good, fair, bad}

to indicate the degree of relevance of the document with
respect to the query in question. This allows us to calculate
some click statistics and analyze user click behaviors.

Figure 1 shows the average number of sessions for a query,
in which a document at a certain position is skipped (not
clicked), out of all the sessions for the query (a.k.a. skip
rate). We consider the skip rates for three relevance grades:
perfect, good, bad. We observe that the skip rates are
substantially higher for documents at the bottom of the re-
sult set regardless of the relevance grades of the documents.
Documents with perfect grade generate more clicks at the
top positions, but documents with bad grade also garner
substantial clicks on par with those with good grade. This
demonstrates that users tend to click the top documents
even though the relevance grades of the documents are low
and the raw click frequencies alone will not be a reliable
indicator of relevance.

Further investigation leads us to focus on the sequential
nature of user clicks. Table 1 provides a typical example ex-
tracted from the dataset with regard to the query: pregnant
man. The first line of the table includes the query issued to
the search engine, and each following line lists the sequence

1In response to a query, search engines sometimes may re-
turn the top ten documents in varying orders, or some new
documents may appear in the top ten list due to search in-
frastructure changes and/or ranking feature updating.

Table 1: Sample user click sessions for the query
“pregnant man”.

[pregnant man]
2 3 5
1 2 3
2 3
1 3
1 2 3
2 3 6 7 3

of clicks a user performed in his/her query session, and the
numbers in the table denote the positions of the document
clicked in the result set. We examine the second and the
third documents, which are labeled as good and excellent,
respectively. The second document:

http://abcnews.go.com/Primetime/story?id=2346476&page=1

is an ABC news article in August 2006 about a medical mys-
tery: A man in India with twin living inside him. The third
document

http://abcnews.go.com/Health/story?id=4521341&page=1

is an ABC news in March 2008 about an Oregon transgen-
dered man claiming he was pregnant. The query and click
log were collected around March 2008. Apparently, the users
at that time period preferred the third document to the sec-
ond one. But from click logs we notice that there are 521
sessions with at least one click on the second document and
340 sessions on the third one. If we only rely on click fre-
quency, even after we discount the factor of click frequency
difference caused by ranking positions at 2 and 3 (ref. Table
1), we may still be misled to an incorrect conclusion that
the second document is more relevant than the third one.
However, when we look into the data, we find that there are
266 sessions where the second document is clicked before
the third one, while there are only 12 sessions in which a
reversed click order are observed. This sequential click pat-
tern clearly explains the “relevance disorder”: Most of the
time, the users who clicked the second document were not
satisfied with the information they acquired, and proceeded
to click the third one; however, if the users have clicked the
third document, they then seldom need to click the second
one, indicating the higher relevance of the third document
than the second one.

Similar scenarios and sequential click patterns are also
observed in many other aggregated sessions. The examples
provided above are only to illustrate that certainly there are
some sequential click patterns that are embedded in an ag-
gregation of user clicks, and these click patterns provide sub-
stantial relevance information of the documents displayed
in the search results. Due to the sequential nature of user
clicks, a local model, which is defined on a single document,
is therefore not capable of modeling user interactions with
the search results. This motivates to use sequential mod-
els for click modeling that can take all the documents as
its inputs and infer the relevance labels of all the documents
jointly. Furthermore, in respect to the ranking nature of web
search, we refer this ranking-targeted sequential learning as
global ranking.

One important issue needs to be clarified here is that in
our click modeling we are not using single user’s click se-

Table 2: The click features used in the model.

Position Position of the document in the result list
ClickRank Rank of the 1st click of doc. in click seq.
Frequency Average number of clicks for this document
FrequencyRank Rank in the list sorted by num. of clicks
IsNextClicked 1 if next position is clicked, 0 otherwise
IsPreviousClicked 1 if previous position is clicked, 0 otherwise
IsAboveClicked 1 if there is a click above, 0 otherwise
IsBelowClicked 1 if there is a click below, 0 otherwise
ClickDuration Time spent on the document

quence as an input to the global ranking, instead a sequence
of aggregated click features (statistics) is used. This is be-
cause for a given query, generally, different users or even
the same user at different time, may have different click se-
quences, and some are actually quite different from others;
but over many user sessions, certain consistent patterns may
emerge, and these are the basis for the click model we exploit
to infer the relevance labels of the documents. In the next,
we will discuss what kinds of click features are used in the
model and how these aggregated click features are extracted
from user click sessions.

4.1 Click Feature Extraction from Aggregated
Sessions

The features that are used in our model are listed in Ta-
ble 2. All these features are click-related and can be ex-
tracted from user clicks. Besides these features, no other
textual features or hyperlink-related features are used in the
model. Figure 2 illustrates the process of feature extraction
from an aggregated session <q, 10-docs, an aggregation of
user clicks>, where x(q) = {x(q)

1 , x(q)
2 , . . . , x(q)

10 } denotes a se-
quence of feature vectors extracted from the aggregated ses-
sion, with x(q)

i representing the feature vector extracted for

document i. Specifically, to form feature vector x(q)
i , first a

feature vector x(q)
i,j is extracted from each user j’s click infor-

mation, and j ∈ {1, 2, . . . }, then x(q)
i is formed by averaging

over {x(q)
i,j , ∀j ∈ {1, 2, . . . }}, i.e., x(q)

i is actually an aggre-
gated feature vector for document i. Note that some of the
features in Table 2 are statistics independent of temporal in-
formation of the clicks, such as “Position” and “Frequency”,
but the other features are relying on their surrounding doc-
uments and the click sequences. Finally, for the purpose of
training, each query-document pair is assigned a label by
human judges, with y(q) = {y(q)

1 , y(q)
2 , . . . , y(q)

10 } representing
the sequence of assigned relevance labels.

From the experiments that follows, we find that “Fre-
quency” is one of the most important features considered
in the model. However, we should emphasize that the raw
“Frequency” feature itself is quite noisy [10]; only when it
is used jointly with other features, “Frequency” becomes a
rather reliable indicator of the relevance labels. In addition,
“Position” is another important feature considered in the
paper since it indicates the label context produced by the
baseline ranking models. Generally, the baseline ranking is
imperfect, but it is not totally random: There is in general
a trend that the top documents are more relevant than the
bottom documents in the search results, and the algorithm
should utilize this context information.

={ }
…

o

o

user2

doc10

odoci

oodoc2

odoc1

user1

q

…
…

Feature Extraction

x1

x2

xi

x10

…
…

={ }
y1

y2

yi

y10

…
…

Figure 2: An illustration of feature extraction for
an aggregated session. x(q) denotes an extracted se-
quence of feature vectors, and y(q) denotes the corre-
sponding label sequence that is assigned by human
judges for training.

5. THE GLOBAL RANKING ALGORITHMS
It is generally a challenging task to develop a global rank-

ing algorithm, which can fully utilize all the local and global
information among the documents to produce a document
rank. Fortunately, under a loose approximation, the global
ranking model defined in Equation (2) can be regarded as
a sequential supervised learning problem [12, 5] since both
have almost identical functional expressions. Therefore, the
existing research in sequential supervised learning can be
useful of solving the global ranking problem. One example
of global ranking algorithm that follows in this direction is
the one proposed in [14], in which the CRF algorithm is
modified to handle continuous features and ranking scores.
Without solving a ranking problem directly, however, this
modified CRF algorithm is more in the sense of regression.
In respect to the ranking nature of Web search, in this sec-
tion we further explore several sequential supervised algo-
rithms, including the CRF [12], the sliding window method
and the recurrent sliding window method [5], to the global
ranking problem. We emphasize the importance to adapt
these algorithms to the ranking problem.

5.1 Conditional Random Fields
The conditional random fields [12] (CRFs) are one of the

well-known probabilistic models for sequential labeling. Com-
pared to the hidden Markov models [15] (HMMs), which
define a joint probability distribution p(x,y) over an obser-
vation sequence x and a label sequence y, the CRFs define
a conditional probability distribution p(y|x) directly, which
is used to label a sequence of observations x by selecting the
label sequence y that maximizes the conditional probability.
Because the CRF model is conditional, dependencies among
the observations x do not need to be explicitly represented,
affording the use of rich, global features of the input. There-
fore, no effort is wasted on modeling the observations, and
one is free from having to make unwarranted independence
assumptions as required by the HMMs [12, 19, 21].

A CRF is simply a conditional distribution p(y|x) with
an associated graphical structure, defining the dependencies
among the components yi of y (i.e., how to factorize p(y|x)),
globally conditioned on the observations x. The simplest
and most commonly used structure for modeling sequences

is a linear chain, and the corresponding conditional distri-
bution is defined as follows:

p(y|x)∝exp

∑

j,t

λjfj(yt, yt−1,x)+
∑

k,t

µkgk(yt,x)

 , (3)

where fj(y, y′,x) is a transition feature function, gk(y,x) is
an observation feature function, and

Λ = {λ1, λ2, · · · , µ1, µ2, · · · }

are the parameters to be estimated. In general, the feature
functions in Equation (3) are defined on the entire observa-
tion sequence x. However, in practice, due to computational
issues and to avoid overfitting a subset of x is adopted in
each feature function, and j and k in Equation (3) iterate
over arbitrary subsets of x, either in time dimension or in
feature dimension.

Given i.i.d. training data D = {x(i),y(i)}N
i=1, the max-

imum likelihood estimate can be used to compute the pa-
rameters Λ from

l(Λ) =
N∑

i=1

log p(y(i)|x(i)), (4)

which is a concave function and can be optimized efficiently
by using the quasi-Newton methods, such as BFGS [19].
Once the parameters Λ are determined, given a new obser-
vation sequence x∗, the most probable label sequence y∗ can
be computed by using the Viterbi algorithm [15].

Originally developed in computational linguistics and bioin-
formatics, the CRF feature functions used in Equation (3)
are often in the form of the Kronecker delta function [12].
This choice of feature function results in a very efficient opti-
mization method, but it also restricts the inputs and outputs
of the CRF have to be discrete values, i.e., the label sequence
y∗ is a sequence of discrete values, each one corresponding
to a relevance grade of one document. Although y∗ com-
puted from the Viterbi algorithm is the most probable one,
from the experiments we find that it tends to have a major-
ity of y∗i ∈ y∗ with the same labels. This is likely due to the
limited label categories (i.e., 5 grades) compared with the
relatively larger length of a label sequence (i.e., T = 10).
Thus, a method that can produce continuous ranking scores
is highly desired. We therefore use the following approxima-
tion for this purpose.

Besides generating the most probable label sequence y∗,
the Viterbi algorithm also yields the class probabilities for
each label yi in y, i.e., p(yi = g|x∗), ∀ i ∈ {1, 2, · · · , T} and
g ∈ {0, 1, 2, 3, 4}, where g denotes a relevance grade, with
g = 4 corresponding to Perfect and g = 0 to Bad, and so
on. So, we may use the expected relevance to convert class
probabilities into ranking scores:

ỹi =
4∑

g=0

g × p(yi =g|x∗). (5)

Although Equation (5) is less of principle than the most
probable sequence estimated from the Viterbi algorithm, in
practice, we observe improved performance of this approxi-
mation over the Viterbi algorithm. In addition, the expected
relevance (5) has been used in [13] to convert classification
categories into soft ranking scores.

Note that the CRF algorithms discussed above and in [14]
all tackle a ranking problem as a classification/regression

problem since both optimize the CRF parameters in a max-
imum likelihood estimate without considering score ranks.
It would be very challenging to adapt the CRF completely
to a global ranking algorithm due to its complicated model
assumptions. We leave this as an open question for our fu-
ture study. Instead, we will explore two simplified sequential
learning methods, such as the sliding window method and
the recurrent sliding window method, and adapt them into
the global ranking algorithms.

5.2 (Recurrent) Sliding Window Methods
The sliding window method converts the sequential super-

vised learning problem into an ordinary supervised learning
problem [5]. In our ranking context, the scoring function f
maps a set of consecutive observations in a window of width
w into a ranking score. In particular, let d = (w − 1)/2 be
the half-width of the window. The scoring function uses

x̂i = (xi−d, xi−d+1, . . . , xi, . . . , xi+d−1, xi+d)

as an extended feature to predict the ranking score ŷi, i.e.,
ŷi = f(x̂i), ∀i ∈ {1, 2, . . . , T}. Although this is a crude
approximation to the CRF, the advantage of the sliding
window method is its simplicity, which entails any classi-
cal ranking algorithms to be applied to the global ranking
problem.

Similarly, in a recurrent sliding window method, the pre-
dicted scores of the old observations are combined with the
extended feature to predict the score of the current observa-
tion. Particularly, when predicting the score for xi, we can
use the following available predicted scores ŷi−d, . . . , ŷi−1 in
addition to the sliding window to form the extended feature
when predicting ŷi, i.e., the extended feature for xi becomes

x̂i = (ŷi−d, . . . , ŷi−1, xi−d, xi−d+1, . . . , xi, . . . , xi+d).

In contrast to the sliding window mehtod, the recurrent one
can capture predictive information that was not being cap-
tured by the simple sliding window method. In our click
modeling context, for example, if xi is being clicked and
xi−1 is not, then we probably should have ŷi > ŷi−1.

5.3 GBrank: A Boosting Algorithm for Pref-
erence Learning

As an advocated algorithm in this paper to implement
the sliding window method and the recurrent sliding win-
dow method, GBrank [23] is discussed briefly in this section.
Generally, GBrank is a learning to rank algorithm that is
trained on preference data. It requires the training data be
in the form of pairwise comparisons, i.e., one document is
more relevant than another with respect to a query. Since in
the training data, we have relevance grades assigned by hu-
man judges to each query-document pair, we can use these
absolute relevance judgements to generate a set of preference
data. For example, given a query q and two documents u
and v, if u has a higher grade than v, e.g., perfect vs. good,
we include the preference u & v in the extracted preference
set, and vice versa. This will be considered on all pairs of
documents within a search session, except those with equal
grades. By considering all the queries in the dataset, we
therefore extract a set of preference data, denoted as

S = {〈ui, vi〉 | ui & vi, i = 1, 2, . . . , M}.

In [23], the problem of learning ranking functions is cast as
the problem of computing a function h, such that h matches

a given set of preferences as many as possible, i.e., h(ui) ≥
h(vi), if ui & vi, i = 1, 2, . . . , M . The following objective
function (squared hinge loss) is used to measure the risk of
a given ranking function h,2

R(h) =
1
2

N∑

i=1

(max {0, h(vi)− h(ui) + τ})2,

and we need to solve the following minimization problem

min
h∈H

R(h),

where H is a function class, chosen to be linear combinations
of regression trees in our case. This minimization problem
is solved by using functional gradient descent discussed in
[7]. We summarize the GBrank algorithm [23] for learning
ranking function h using gradient boosting as follows:

Algorithm GBrank:
Start with an initial guess h0, for k = 1, 2, . . . , K

1. Using hk−1 as the current approximation of h, we sep-
arate S into two disjoint sets,

S+ = {〈ui, vi〉 ∈ S|hk−1(ui) ≥ hk−1(vi) + τ}

and

S− = {〈ui, vi〉 ∈ S|hk−1(ui) < hk−1(vi) + τ}

2. Fit a regression function (decision tree) gk(x) on the
following training data

(ui, [hk−1(vi)− hk−1(ui) + τ]),

(vi, −[hk−1(vi)− hk−1(ui) + τ]), ∀〈ui, vi〉 ∈ S−

3. Form the new ranking function as

hk(x) = hk−1(x) + ηgk(x)

where η is a shrinkage factor.

Two parameters need to be determined: the shrinkage factor
η and the number of iterations K, this is usually done by
cross-validation.

6. EXPERIMENTS
We carry out an extensive experimental study of the pro-

posed click modeling framework in this section. We first in-
troduce the dataset used in our experiments, then describe
the evaluation methods, followed by experimental results on
performance comparison among different competitive meth-
ods.

6.1 Dataset
The user click data we used in the experiments are col-

lected from a commercial search engine over a certain pe-
riod of time. Following the procedures described in Section
4, we selected 9677 queries (and therefore 9677 aggregated
sessions) from the user click logs that are both frequently

2This loss function can be considered as a smooth surrogate
of the total number of contradicting pairs in the given pref-
erence data with respect to the function h. We say u & v is
a contradicting pair with respect to h if h(u) < h(v).

queried by the users and have click rates over 1.0, where the
click rate is defined as follows:

click rate(query)=

∑
i∈sessions(query) #clicks(i)

#sessions(query)
. (6)

Such a selection of queries is to ensure that each aggregated
session will have enough user clicks to accumulate statis-
tically significant click features. We then requested human
judges to label the top ten documents of each of 9677 queries
to be perfect, excellent, good, fair, or bad accord-
ing to their degrees of relevance with respect to the query.
This constitutes our dataset, over which we examine the
performance of the proposed click modeling methods.

6.2 Evaluation Metrics
Our evaluation focuses on the comparison between the

predicted ranking of the click models and the original rank-
ing produced by the baseline (production) models, i.e., the
comparison in terms of search results re-ranking. We adopt
the Discounted Cumulative Gain (DCG) criterion, a stan-
dard quality measure in information retrieval, to estimate
the accuracy of various rankings. For example, the DCG
score of a ranking is computed as

DCG(L) =
L∑

i=1

2g(i) − 1
log(1 + i)

, (7)

where L is the“truncation level”and is set to be L = 5 in our
experiments, and g(i) ∈ {0, 1, 2, 3, 4} is the relevance grade
of the ith document in the ranked result set. g(i) = 4 cor-
responds to a “perfect” relevance, and g(i) = 0 corresponds
to a “bad” relevance.

6.3 Performance Comparison
To illustrate the effectiveness of the supervised click mod-

eling methods proposed in this paper, we test the perfor-
mances of the CRF (Section 5.1), the sliding window method
and the recurrent sliding window method (Section 5.2) on
the collected dataset. As we have discussed in Section 5.2,
the simplicity of the sliding window method and its recurrent
version entails any ranking algorithms to be applied to the
global ranking problem. We therefore implement the sliding
window method and the recurrent sliding window method
by SVM [20], GBDT [7] and GBrank [23], where SVM and
GBDT are the regression algorithms but are used for the
ranking problem, and GBrank is the only learning to rank
method considered. As a comparison, we also examine the
performance of the cascade model proposed in [4]. The mea-
sure of the performance is computed by the DCG(5) gains
of the re-ranking over the original ranking from the baseline
models.

Table 3 reports the performances among five different meth-
ods under different experiment settings, in which (1) CRF
uses two observations (current and previous) in the defini-
tion of the observation function gk(yt, xt, xt−1), and the
transition feature function fj(yt, yt−1, xt, xt−1); this CRF
configuration is selected because it yields the best perfor-
mance over 10-fold CV; (2) the sliding window (SW) and the
recurrent sliding window (RSW) methods as implemented
by linear SVM, GBDT and GBrank with different window
sizes, indicated by the digits following “SW” or “RSW”. We
have also included at the bottom of Table 3 two unsuper-
vised methods: the cascade model, and a variant in which

we add 1/position to the predicted scores. The idea is to
bias the predictions towards the current ranking. We exam-
ine the performance of each method on different number of
aggregated sessions filtered by four click rates: 1.0, 1.2, 1.5,
and 1.7.

Table 3: The DCG(5) gains (%) of different algo-
rithms on aggregated sessions extracted from click
logs; the results are computed from 10-fold CV.

Click Rate >1.0 >1.2 >1.5 >1.7
#sessions 9677 6795 2042 1119

CRF 0.91 1.15 2.07 2.50
SW1 -0.09 0.04 0.21 0.41

SVM SW2 0.39 0.38 0.32 1.26
SW3 0.08 0.30 -0.06 1.06
SW1 0.77 0.97 1.83 2.60

GBDT SW2 1.01 1.26 1.98 2.79
SW3 1.02 1.22 2.16 2.44
SW1 0.77 1.00 2.13 3.03
SW3 1.15 1.39 2.34 3.19

GBrank SW5 1.17 1.48 2.35 3.40
SW7 1.23 1.42 2.34 3.23
RSW3 1.36 1.67 2.62 3.93

GBrank RSW5 1.59 2.02 3.07 4.06
RSW7 1.67 2.11 3.04 3.64

Cascade w/o pos. -3.57 -3.62 -1.84 -0.20
with pos. 1.26 1.49 2.44 3.33

It is demonstrated in Table 3 that (1) As the click rate
increases, all methods in general have increasing DCG(5)
gains over the original rankings from the baseline models.
Since our supervised click modeling methods only exploit
user click information, it is expectable that the more clicks
in a user session, the more information can be exploited
by the model for reliable prediction. (2) Better than the
baseline models, CRF does not show the best performance
among different competitive methods. This is likely due to
the restricted modeling assumptions and the regression na-
ture of the algorithm. (3) The tree-based methods, such as
GBDT and GBrank, outperforms the linear SVM. This is
likely because a tree-based model is in general more expres-
sive than a linear model. (4) As the window size increases,
in general, the sliding window (SW) methods and the re-
current sliding window (RSW) methods have the increasing
DCG(5) gains, demonstrating that neighboring observations
indeed carrying useful information for ranking score predic-
tions. (5) The SVM and GBDT with the recurrent sliding
windows have significant dropped DCG(5) gains (about -
6%) over the original rankings. (For concise, these results
are not provided in the table.) This is because SVM and
GBDT explicitly deal with a ranking problem as a regres-
sion problem. As we noticed from the experiments, although
the recurrent SVM and GBDT have smaller regression er-
rors than their sliding window implementations, the corre-
sponding DCG(5) gains are indeed much worse. This clearly
demonstrates the discrepancies between the objectives of
regression algorithms and ranking algorithms. (6) Among
all the algorithms considered, GBrank(RSW) outperforms
all the other methods, demonstrating the pair-wise ranking
methods, such as GBrank, are more suitable to our click

modeling framework. (7) The original cascade model (w/o
pos.) underperforms the baseline models, but a variant of it
(with pos.) dramatically improves its performance. As we
have discussed in Section 4.1, the label context information
as indicated by“Position” is one of the important features in
the click data modeling, and an algorithm probably should
use this information if available.

6.4 Comparisons to The Heuristic Rule based
Methods

With the ranking scores predicted by the supervised click
modeling methods, we can extract preference pairs in the
form of (u & v), which represents that document u is more
relevant than document v with respect to a query. This kind
of preference pairs can also be extracted via the heuristic
rule based methods, such as SkipAbove and SkipNext [16].
This raises the question about which method is more accu-
rate in extracting preference pairs, assuming that the ground
truth is the preference extracted from relevance grades as-
signed by human judges. Since the experiments in Section
6.3 demonstrate that GBrank(RSW7) has the best perfor-
mance over all the other methods considered, in this part
of experiments, we only consider the performance compar-
ison between GBrank(RSW7) and the heuristic rule based
methods.

Both SkipAbove and SkipNext are the heuristics that are
derived from eyetracking studies [16]. Specifically, the first
strategy, SkipAbove proposes that given a clicked-on docu-
ment, any higher ranked document that was not clicked on
is less relevant, while the second strategy, SkipNext claims
that for two adjacent documents in the search results if the
first document is clicked on, but the second is not, the first
is likely more relevant than the second. Since SkipAbove
extracts the preference pairs in a reverse order of the origi-
nal rankings, accurately extracted SkipAbove pairs are more
precious than those extracted from SkipNext, due to their
potentials of correcting the baseline ranking models.

To compare the performance of GBrank(RSW7) against
SkipAbove and SkipNext, we separate the GBrank(RSW7)
extracted pairs into two categories: “SN Pairs” and “SA
Pairs”, according to whether the extracted pairs are con-
sistent with the original rankings or not. The category of
“SN Pairs” is consistent with the original rankings, and is
compared with SkipNext; and the other category “SA Pairs”
is compared with SkipAbove. For each extracted prefer-
ence pair, there are three cases that can occur when it is
compared with the ground truth: (1) agree with ground
truth, (2) disagree with ground truth due to tied prefer-
ence, and (3) disagree with ground truth due to opposite
preference. By adjusting the thresholds in extracting pairs
from GBrank(RSW7), SkipAbove and SkipNext, we gener-
ate approximately equal number of preference pairs from
each method, and compute the percentages for each of the
three occurrences, with the results reported in Table 4.

It is demonstrated in Table 4 that GBrank(RSW7) out-
performs both SkipAbove and SkipNext by a large margin
on the dataset considered. In particular, GBrank has 87.84%
accuracy in generating SkipNext-like preference pairs, and
41.7% accuracy in generating SkipAbove-like perference pairs,
while SkipNext and SkipAbove only have 55.23% and 27.87%
accuracy, respectively. This by a large part is contributed
by the supervised learning properties of our click model-
ing methods, while SkipAbove and SkipNext are, in some

Table 4: The performance comparison of
GBrank(RSW7), SkipAbove and SkipNext on
9677 aggregated sessions extracted from click logs;
the GBrank results are computed from 10-fold CV.

Methods #Pairs Agree Tie Disagree

GBrank(SN Pairs) 16000 87.84 9.17 2.99
SkipNext 16000 55.23 32.35 12.42

GBrank(SA Pairs) 1000 41.71 39.48 18.81
SkipAbove 1000 27.87 37.88 34.25

sense, unsupervised learning methods. In addition, an in-
teresting fact worth of emphases is the large discrepancy on
the number of preference pairs generated from GBrank(SN
Pairs) and GBrank(SA Pairs). Indeed, given a high quality
baseline ranking model, it is much more difficult to generate
accurate SkipAbove pairs than their SkipNext counterparts.

7. CONCLUDING REMARKS
This paper focuses on extracting relevance information

from user click data via a global ranking framework, and
global ranking is explored here to utilize the relational in-
formation among the documents as manifested by an aggre-
gation of user clicks. Experiments on the click data collected
from a commercial search engine demonstrate the effective-
ness of the proposed method and its superior performance
over a set of widely used unsupervised methods, such as the
cascade model [4] and the heuristic rule based methods [16].
Although it is unfair to compare a supervised method with
an unsupervised method, this paper introduced an approach
in cases some human judgements are available for informa-
tion extraction. We believe that the supervised approach
can be more reliable than the unsupervised approach be-
cause user click data are inherently very noisy; by exploring
supervised learning in click data modeling, we expect our
click model can reliably extract relevance information by
calibrating with human relevance judgments. Some future
research directions that are worth of further investigation
include: (1) a CRF algorithm that is fully adapted to the
global ranking problem; and (2) exploring other supervised
learning algorithms, such as those proposed in the context
of structured learning [11], to the global ranking problem.

8. REFERENCES
[1] S. Brin and L. Page. The anatomy of a large-scale

hypertextual web search engine. In Proceedings of the
seventh international conference on World Wide Web,
1998.

[2] C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hullender. Learning to
rank using gradient descent. In Proceedings of the 22nd
International Conference on Machine Learning, 2005.

[3] B. Carterette and R. Jones. Evaluating search engines
by modeling the relationship between relevance and
clicks. In NIPS, 2007.

[4] N. Craswell, O. Zoeterm, M. Taylor, and B. Ramsey.
An experimental comparison of click position-bias
models. In Proceedings of the International Conference
on Web Search and Web Data Mining (WSDM), 2008.

[5] T. G. Dietterich. Machine learning for sequential data:
a review. Lecture Notes in Computer Science,
(2396):15–30, 2002.

[6] G. Dupret and B. Piwowarski. A user browsing model
to predict search engine click data from past
observations. In Proceedings of the 31st annual
international ACM SIGIR conference on Research and
development in information retrieval (SIGIR), 2008.

[7] J. Friedman. Greedy function approximation: a
gradient boosting machine. Ann. Statist.,
29:1189–1232, 2001.

[8] N. Fuhr and C. Buckley. A probabilistic learning
approach for document indexing. ACM Transactions
on Information Systems, 9:223–248, 1991.

[9] T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of the ACM
Conference on Knowledge Discovery and Data Mining
(KDD), 2002.

[10] T. Joachims, L. Granka, and B. Pan. Accurately
interpreting clickthrough data as implicit feedback. In
Proceedings of 28th ACM SIGIR, 2005.

[11] A. Kulesza and F. Pereira. Structured learning with
approximate inference. In NIPS, 2007.

[12] J. Lafferty, A. McCallum, and F. Pereira. Conditional
random fields: Probabilistic models for segmenting
and labeling sequence data. In ICML, pages 282–289,
2001.

[13] P. Li, C. Burges, and Q. Wu. Mcrank: Learning to
rank using multiple classifications and gradient
boosting. In NIPS, 2008.

[14] T. Qin, T. Liu, X. Zhang, D. Wang, and H. Li. Global
ranking using continuous conditional random fields. In
NIPS, 2008.

[15] L. R. Rabiner. A tutorial on hidden markov models
and selected applications in speech recognition. In
Proceedings of the IEEE, pages 257–286, 1989.

[16] F. Radlinski and T. Joachims. Evaluating the
robustness of learning from implicit feedback. In
ICML Workshop on Learning In Web Search, 2005.

[17] F. Radlinski and T. Joachims. Active exploration for
learning ranking from clickthrough data. In
Proceedings of the ACM International Conference on
Knowledge Discovery and Data Mining (KDD), 2007.

[18] G. Salton. Automatic Text Processing. Addison
Wesley, MA, 1989.

[19] C. Sutton and A. McCallum. An introduction to
conditional random fields for relational learning,
chapter Book chapter in Introduction to Statistical
Relational Learning. MIT Press, 2006.

[20] V. N. Vapnik. The Nature of Statistical Learning
Theory. Springer, 1995.

[21] H. M. Wallach. Conditional random fields: An
introduction. Technical report, Dept. of Computer and
Information Science, University of Pennsylvania, 2004.

[22] X. Wang and C. Zhai. Learn from web search logs to
organize search results. In Proceedings of the 30th
ACM SIGIR, 2007.

[23] Z. Zheng, H. Zha, K. Chen, and G. Sun. A regression
framework for learning ranking functions using
relative relevance judgments. In Proceedings of the
30th ACM SIGIR conference, 2007.

