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Abstract – The problem of adaptive multi-modality sensing of landmines is considered, based on 

electromagnetic induction (EMI) and ground-penetrating radar (GPR) sensors. Two formulations are considered, 

based on a partially observable Markov decision process (POMDP) framework. In the first formulation it is 

assumed that sufficient training data are available, and a POMDP model is designed based on physics-based 

features, with model selection performed via a variational Bayes analysis of several possible models. In the 

second approach the training data are assumed absent or insufficient, and a lifelong-learning approach is 

considered, in which exploration and exploitation are integrated. We provide a detailed description of both 

formulations, with example results presented using measured EMI and GPR data, for buried mines and clutter. 

I. Introduction 

There are many sensing challenges for which the use of an unmanned autonomous sensing platform is desirable, 

vis-à-vis using humans to deploy the sensors by hand. One important application that fits this profile is ground-

based sensing of landmines [1]. This problem represents a significant challenge for an autonomous agent that 

must control the platform position, while also deciding which of the possibly multiple sensors to deploy. This 

challenge is exacerbated by the heterogeneous characteristics of the environment that may be encountered [2]. 

For example, there are many different types of landmines (metal, plastic, small and large), and these multiple 

mines appear differently as sensed by typical sensors; ground-penetrating radar (GPR) and electromagnetic 

induction (EMI) sensors constitute the principal tools applied for handheld landmine detection. The GPR and 

EMI signatures of landmines and clutter are also a strong function of the soil characteristics [3,4], which are 

heterogeneous and changing as a function of water content [2] (the electric and magnetic properties of soils are a 

strong function of the moisture content, which is locally varying and typically poorly known in practice). 
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For the problem considered here we assume a GPR and EMI sensor are deployed on the same unmanned 

platform. The task is for this system to navigate autonomously through a mine field, with the goal of detecting 

landmines, and doing so with a low false-alarm rate. The sensing “agent” must decide where to move the 

platform, which sensor (GPR or EMI) to deploy at a given point, and when to declare that a landmine is present 

or not. This task must be performed within a sensing budget, defined by the cost of deploying a sensor as well as 

the costs associated with making particular declarations (e.g., declaring the presence of a mine or clutter); as 

described below, the cost associated with making classifications is performed within a Bayes-risk setting.  

The basic objective may be cast in the form of an adaptive sensor-management problem [5,6] (here with two 

sensors, the GPR and EMI sensors), with the problem complicated significantly by the complexities of the 

landmine and clutter signatures and the dependence of such on (poorly known) environmental conditions. We 

here consider a partially observable Markov decision process (POMDP) formalism [7]. In the POMDP 

formulation the environment under test is assumed to reside within a particular state SE, and this state is not 

observable directly; the state of the environment, defined by the presence/absence of a mine in the region being 

sensed, is unchanged by the sensing itself. The state SE is “partially” observable, in the form of the measured 

sensor data. The agent has particular actions at its disposal, here characterized by the opportunity to move to a 

new location, deploy either of the two (GPR and EMI) sensors, or classify a given region (make an inference 

with regard to SE). Each of these actions has an expected immediate cost, as well as an impact on the long-term 

sensing cost. The POMDP constitutes a framework that balances the (discounted) infinite-horizon performance 

of this multi-sensor problem, i.e., it accounts for the immediate expected cost, as well as discounted future costs, 

over an infinite horizon [7].  

The POMDP is employed to constitute a sensing policy, defining the optimal next action to take based upon the 

agent’s current belief about the environment under test [7]. The belief is defined in terms of a belief state, a 

probability mass function (pmf) that reflects the probabilities p(SE) for all environmental states SE, based upon 

all previous actions and observations [7]. To compute the belief state one requires an underlying model of the 

environment under test [7], characterized by a statistical representation of a sequence of actions and 

observations. For the work of interest here the necessity of an underlying model is a serious limitation, for the 

reasons discussed above: the specific types of mines and clutter that may be encountered are typically unknown 

a priori, and even if these were known, the associated sensor signatures are a strong function of the soil 

properties, which are generally unknown and may change with variable weather. 

Nevertheless, if we assume that we have access to measured data from the GPR and EMI sensors for targets and 

soils of interest, we may design the required statistical models through which a POMDP policy may be realized. 
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As demonstrated below, such statistical models are well characterized in terms of hidden Markov models 

(HMMs) [8,9] with action-dependent state-transition probabilities. In this application the target states ST of the 

HMM are defined by sensor positions relative to the target, and the sequence of target states visited is modeled 

as a Markov process, conditioned on the sensor-platform motion; since the target position is unknown 

(“hidden”), the targets are modeled via an HMM. In this setting we must distinguish the overarching state of the 

environment under test SE, which is to be inferred by the POMDP policy (via the belief state), vis-à-vis the 

hidden underlying states of the target model ST, which are visited when performing the adaptive sensing. 

Given a set of GPR and EMI data, measured at a sequence of spatial positions relative to the target, we must 

now develop the underlying HMMs required for the POMDP. Issues that must be addressed include defining an 

appropriate number of target states ST; we must also define the appropriate number of codes [10] for 

quantization of the observations, such that the observations are discrete, as required by the POMDP. To address 

the problem of determining the proper number of states ST associated with a given target type, as well as the 

number of codes, we employ a variational-Bayes (VB) HMM analysis [11,12], which yields a full posterior 

density function on the HMM parameter values. In addition, the VB formulation allows us to evaluate the 

“evidence” for each model type (defined by the number of states and codes) [13], from which the proper number 

of (data driven) states ST and codes may be defined. 

Rather than assuming that we know which particular landmines, clutter and environmental (soil) conditions are 

under interrogation, the underlying POMDP model may be constituted to account for the full range of 

uncertainty with regard to these parameters [14]. As the agent interrogates the environment with the multiple 

sensors, the belief state narrows down the conditions under test, to those actually under interrogation. This 

narrowing down of the belief state while sensing the environment is a form of exploration, with exploitation 

performed simultaneously [14]. A new action is introduced, with appropriate cost, characterized by calling an 

oracle to reveal a label for an item under interrogation, this allowing the underlying POMDP model to expand 

with the introduction of new mines, clutter and/or environmental (soil) conditions. 

It is computationally expensive to perform an exploration-exploitation framework of the type summarized above 

(the number of environmental states SE must grow to account for the full range of possible mines, clutter and soil 

conditions). To address this issue an approximate algorithm has been proposed [14], also employing an oracle, 

in which the full distribution on target and environmental conditions is sampled, to constitute a finite set of 

possible environments. As the environment is sensed these models are pruned, and new models are introduced in 

their place, through exploitation of the oracle [14]. We adopt a modified form of this framework in the work 

presented here, with specific application to the landmine-sensing problem. As demonstrated in the examples, we 
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use this approach to address multi-sensor (GPR and EMI) interrogation of a simulated mine field, with no a 

priori knowledge assumed with regard to the mines, clutter and soil conditions. This is termed “lifelong 

learning”, because the algorithm (agent) continually learns and refines its policy as it interacts with the 

environment. 

In this paper we first develop a POMDP formulation based on the (unrealistic) assumption that a priori and 

adequate training data are available for model development. This solution is used as a comparison for the 

“lifelong-learning” algorithm, in which an oracle is employed and the algorithm learns about its environment as 

it is sensed. We here employ measured GPR and EMI data, for real mines and realistic clutter. The measured 

data considered in this study are available upon request, and therefore it is hoped that it will evolve to a standard 

data set researchers may use to test different adaptive sensor-management algorithms. 

II. Partially Observable Markov Decision Processes  

In this section we introduce POMDP basics, assuming that the underlying POMDP model is known, and in 

Section III we discuss how the model may be learned based upon training data. In Section IV this is generalized 

further by assuming that the proper model is unknown, with model learning performed adaptively while sensing 

the environment (“lifelong” learning). 

A POMDP model is represented by a six-element tuple { }ROTAS ,,,,, Ω  [7], where S is a finite set of discrete 

states, A is a finite set of discrete actions, and Ω is a finite set of discrete observations. The state-transition 

probability 

),|'Pr()',,( 1 aAsSsSsasT ttt ==== +       (2.1) 

describes the probability of transitioning from state s to state s’ when taking action a. The observation function 

)',|Pr(),',( 11 sSaAoOosaO ttt ==== ++       (2.2) 

describes the probability of sensing observation o after taking action a and transiting to state s’. Finally, the 

reward function R(s, a) represents the immediate expected reward the agent receives by taking action a in state 

s. 

Since the state is not observed directly, a belief state b is introduced. The belief state is a probability distribution 

over all states, representing the agent’s probability of being in each of the states based on past actions and 
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observations, assuming access to the correct underlying model. The belief state is updated by Bayes rule after 

each action and observation, based on the previous belief state: 

∑= ∈ −Ss tt sbsasTosaO
c

sb )()',,(),',(1)'( 1       (2.3) 

with the normalizing constant  

  ∑ ∑∈ ∈ − ==
Ss Ss t baosbsasTosaOc

' 1 ),|Pr()()',,(),',( .    (2.4) 

A POMDP policy is a mapping from belief states to actions, telling the agent which action to take based on the 

current belief state. The goal of the POMDP is to find an optimal policy by maximizing the expected discounted 

reward 
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which is accrued over a horizon of length k. The discount factor ]1,0(∈γ  describes the degree to which future 

rewards are discounted relative to immediate rewards. If k is finite the optimal action depends on the distance 

from the horizon, and therefore the policy is termed non-stationary. However, often an appropriate k is not 

known, so we may consider an infinite-horizon policy, i.e., k goes to infinity, for which we require 1<γ . An 

infinite horizon also implies a stationary policy, independent of the agent’s temporal position. 

When in belief state b, the maximum expected reward k steps from the horizon V(k) is  
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where o
ab  is the belief state after the agent takes action a and observes o, as updated in (2.3). The V(k)(b) 

represents the maximum expected discounted reward the agent will receive if it is in belief state b and takes 

actions according to the optimal policy for future steps. In this paper policy design is performed using the PBVI 

algorithm, with details provided in [15]. 

III. The POMDP Model for Landmine Detection 

The discussion in Section II assumed that the underlying POMDP was available for subsequent policy design. 
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We now discuss how the model is generated for the landmine-sensing problem of interest here, assuming 

labeled multi-sensor data are available. Model construction involves defining S, A, Ω and R and estimating the 

probabilities T and O.   

3.1 Feature extraction 

We assume the EMI and GPR sensors reside on an autonomous platform (robot), and either an EMI or a GPR 

measurement may be made at any point. If appropriate, both types of measurements may be made, sequentially. 

It is also assumed that the observed data are converted into associated features; the features are quantized using 

vector quantization [10], yielding the finite set of observations required for the POMDP. 

3.1.1 EMI features 

The EMI measurements are performed in the frequency domain. A typical frequency-domain EMI response for 

the magnetic field )(ωH  above a metal mine is shown in Fig. 1, where ω  represents the angular frequency. 

The magnetic field induced by a metal target is represented as [16] 
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where a1, b1, b2 are related to the magnetic dipole moments of the target, and 1ω  and 2ω  represent the 

associated EMI resonant frequencies.  

 

 

 

 

 

 

 

 

Fig.1. EMI response and model fit when the sensor is above a metal mine. 
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Features can be extracted from an EMI observation by fitting the measured data )(ωY  to the model in (3.1), 

assuming additive noise n in the observation, i.e., nHY += )()( ωω . The parameters {a1, b1, b2, 1ω , 2ω } are 

our EMI features, obtained via maximum-likelihood fitting under the assumption that n is independently and 

identically distributed Gaussian noise (i.e., minimizing the mean square error between the measured data and the 

model in (3.1)). 

3.1.2 GPR features 

The GPR data for a given sensor position is assumed to be recorded in the time domain. Figure 2(a) shows a 

typical GPR observation when the sensor is above a plastic mine, and Fig. 2(b) is a 2-dimensional scan of the 

landmine signature. Features extracted from a GPR observation include the raw moments (corresponding to 

energy features) and central moments (corresponding to fluctuation features) of the time series. Let T
tty 1}{ =  

denote the time series of a GPR observation, from which the raw moment and central moment features are 
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respectively, in which )(
2

cenf  reflects the variance of a GPR response, and )(
3

cenf  reflects the degree of  
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Fig. 2. The GPR response when the sensor is above a plastic mine. (a) Amplitude vs. time signal 
in one position. The time axis is sampled at a rate of 0.05ns, with the full waveform extending 
over 5ns. The first peak corresponds to the reflection from the ground surface. (b) 2-dimensional 
scan of a plastic mine signature. The down-track positions are sampled at intervals of 2 cm. The 
arrow indicates the position where the sensor measured the signal in (a).  
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asymmetry of the wave. Moments higher than 3rd order were found to not contribute toward distinguishing target 

states, and therefore were not utilized. Details on the GPR and EMI sensors used to collect these data are 

provided in [17,18]. 

3.2 Specification of states S 

In most cases a landmine is cylindrically symmetric and buried with axis perpendicular or near-perpendicular to 

the ground surface; see Fig. 3(a). A clutter item may not satisfy these properties, but the confusing clutter has a 

spatial signature that is similar to that of a mine. We also note that, even if the mine/clutter does not satisfy these 

burial and shape properties, the GPR and EMI sensors typically do not have sufficient resolution to explicitly 

discern the shape and orientation of the target, and therefore the assumptions that follow are appropriate for 

most data to be considered. 

The robot is assumed to move on the (flat) 2-dimensional ground surface. Considering that the energy of the 

signal response is a strong function of the distance from the object center, it is natural to define states as 

concentric annuli on the ground surface, with center above the center of a mine or clutter, as shown in Fig. 3(a) 

and (b). Within each annulus, the sensor responses are considered relatively stationary. However, this simple 

state definition is not satisfying. The robot is assumed to move in four directions (forward, backward, left and 

right) and we hope it can tell its position relative to an underground target by exploring the environment. For 

instance, the robot at points A and B in Fig. 3(b) should have different optimal actions to best locate the 

landmine. At point A, it should walk toward the right, while at point B, the best action is toward the left. The 

state definition in (b) does not allow the POMDP to distinguish this difference. Therefore, we divide each 

annulus into four sectors, corresponding to four directions (north, south, west and east). The updated state 

definition is shown in Fig. 3(c). The representation in Fig. 3(c) motivates the basic state structure considered 

here, and the remaining question is how many states we should use to represent a given target, with this 
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Fig. 3. Definition of state structure. (a) Illustration of the simple state definition. The states are concentric annuli on 
the ground surface, with center above the center of a mine or clutter. (b) Platform of the simple state definition. 
Points A and B are in the same state, although the robot should have different actions for these two positions to best 
locate the landmine. (c) Updated state definition, where each annulus is divided into four sectors, corresponding to 
four directions.  



 9

addressed in Section 3.5. We note that the states discussed above are the target states ST from the Introduction, 

and there will be a set of these states for each type of overarching environmental state SE (e.g., a set of ST states 

for a particular kind of mine, this mine defining an associated SE state). The states s referred to in Sec. II 

correspond to the environmental states SE, and the probability of being in any given SE state is equal to the sum 

of the probabilities of being in the associated set of ST states. 

3.3 Specification of observations Ω 

The discrete set of possible observations Ω is obtained as the codebook resulting from the vector quantization 

[10] of the continuous features. Each of the two sensors (EMI and GPR) generates its own codebook 

independently, resulting in two disjoint codebooks, the union of which defines Ω.  

3.4 Specification of actions A 

In our experiments we consider five types of mines and clutter: metal mines, plastic mines, and three types of 

non-mines (clutter). Type-1 clutter corresponds to large-sized metal items, such as a soda can, while Type-2 

clutter corresponds to small-sized metal items, including nails, shells, and screws. As shown when considering 

results, some of the clutter is non-metallic, but the associated signature has properties that may be characterized 

by the Type-1 and Type-2 classes discussed above. The third type of non-mine corresponds to a “clean” region, 

which means no mine or mine-like objects are present in the vicinity of the sensor. More types of targets (mines 

and clutter) can be added to the model if desired. In Section IV we generalize the framework to allow learning 

of the properties of new clutter and mines. 

The robot is assumed to have 15 actions, i.e., A = {1, 2, …, 15}, of which the first 10 are sensing actions and the 
Table 1: Definition of actions A 

Sensing actions 

EMI sensing:  
1. stay and sense with EMI 
2. walk south and then sense with EMI 
3. walk north and then sense with EMI 
4. walk east and then sense with EMI 
5. walk west and then sense with EMI 

GPR sensing: 
6. stay and sense with GPR 
7. walk south and then sense with GPR 
8. walk north and then sense with GPR 
9. walk east and then sense with GPR 
10. walk west and then sense with GPR 

Declaration actions 

11. declare “metal mine”  
12. declare “plastic mine” 
13. declare “Type-1 clutter” 
14. declare “Type-2 clutter” 
15. declare “clean” 

rest are declaration actions; Table 1 provides a list of these actions. If a sensing action is applied, the robot first 

walks in one of the four directions for a distance δ (or it may stay at the same position), and then it makes an  
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EMI or GPR measurement according to the selected action. It is assumed that the robot always travels the same 

distance δ in each step in any direction, if it does not “stay”. An adaptive step size could also be considered, 

with an increase in complexity. The declaration actions declare the current position (where the robot currently is) 

to be one of the five types of mines or clutter buried underground (these define the “unobservable” 

environmental states SE discussed in the Introduction). 

3.5 Determination of the number of states |S| and the codebook size |Ω| 

The number of states in the representation of a target and the size of the codebook are important issues in the 

POMDP model design. We address these issues by using the variational Bayesian (VB) expectation-

maximization (EM) method for model selection [13], which allows us to compute an approximation of the 

“evidence” for different |S| and |Ω|. 

3.5.1 Variational Bayesian EM algorithm 

The EM algorithm is widely used in learning model parameters for incomplete data. In our problem the data are 

incomplete because the states are unobservable. The traditional EM algorithm gives a maximum likelihood 

(ML) or maximum a posteriori (MAP) point estimate, which does not express the posterior parameter 

uncertainty. Rather than a point estimate of the model parameters, we desire the full posterior via Bayes rule: 

  
∫

==
θθθy

θθy
y

θθyyθ
dpp

pp
p

ppp
)()|(
)()|(

)(
)()|()|(       (3.4) 

where y is measured data, θ  denotes model parameters, and )(θp  is the prior distribution over parameters. 

Given measured data y and several candidate models M1, M2, …, Mn with different structures, the goal of model 

selection is to decide which model fits the data best. One criterion for this selection is comparing the marginal 

likelihood of the data y for each model, and choosing the model that has the highest likelihood. The marginal 

likelihood is also called the “evidence” [13], and is expressed as 

∫= θθθyy dMpMpMp )|(),|()|( .       (3.5) 

This is the denominator of the right-hand side of (3.4), except that the model M is now written explicitly. 

By Bayes rule, the posterior distribution over the candidate models is given as 
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If we assume all candidate models are equally probable, defined by the prior distribution p(Mi), choosing the 

maximum marginal likelihood p(y|Mi) is equivalent to choosing the maximum posterior p(Mi|y) over models. 

The marginal likelihood (3.5) is difficult to evaluate because the integral is typically intractable analytically. The 

variational Bayesian (VB) method [13] provides an approach to compute the lower bound of this marginal 

likelihood, by introducing a factorized distribution )()(),( θxθx θx qqq ≈  to approximate the true distribution 

),|,( Mp yθx , where x denotes the hidden variables (states) and y denotes the observed variables (measured 

data). Details with regard to VB applied to HMMs may be found in [12]. 

3.5.2 Determining |S| and |Ω| 

We now address the problem of determining the number of states and the codebook size, using the VB 

approximation of the model evidence (marginal likelihood). Suppose we are given the target position, and the 

associated EMI and GPR measurements. The horizontal or vertical sensing sequences passing through the center 

of a target are used to estimate the model parameters, as shown in Fig. 4(a). The data are assumed to be 

represented by a hidden Markov model (HMM) with two sets of observations, as shown in Fig. 4(b). We assume 

that the GPR and EMI observations share the same underlying states, which characterize the intrinsic physics of 

the target. The state-sequence statistics are assumed to be Markovian, i.e., for the moving platform, the target 

state sampled at time t depends only on the state sampled at t-1; it is approximated to be independent of the 

states sampled before time t-1.  Given the current target state, the corresponding observation is independent of 

any other states or observations. In addition, the vertical sequence and horizontal sequence (see Fig. 4(a)) are 

 

 

 

 

 

 

GPR observation

EMI observation

Underlying state

Fig. 4. HMM for model selection. (a) Illustration of sensing data positions over a target. The dots are sensing points. 
The horizontal and vertical sensing sequences pass through the center of the target. The concentric annular sectors with 
different colors represent different states.  (b) The underlying HMM with two sets of observations (GPR and EMI). 
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Sensing point: 
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measurements 
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assumed to be equivalent since the target signature is assumed to be symmetric; this symmetry property of the 

signature is a good approximation for most landmines, and it is relevant for the type of clutter confused as a 

mine (for the resolution of the GPR and EMI sensors considered). 

The HMM is used to model a target as a non-stationary stochastic process, as viewed by the sensors when they 

gradually approach the target, approach its center, and then leave it. The response signals (observations) are a 

function of the distance between the sensors and the target center: the smaller this distance, the stronger the 

response.  

The candidate models have |S|=1,5,9,13,…,4K+1 target states, corresponding to 1,2,3,4,…,K+1 annuli, 

respectively, and we consider codebook sizes |Ω|=2,3,4,….,N, where K and N define the range of the model 

structures we consider. The illustration of these candidate models for different numbers of states is shown in 

Fig. 5. The outer radius (15 cm) is the same for each of the candidates, and the different models are 

distinguished by the number of circular rings considered within.  

 

 

 

 

 

To find the best |S| and |Ω|, we need to compute the model evidence for all the combinations of |S| and |Ω|, 

N(K+1) models in total. When N and K are large, this is computationally expensive. An alternative approach for 

large N and K is to iteratively optimize one parameter while fixing the other. We fix |Ω| and find the optimal |S|, 

and then fix |S| as the optimal value from the last step and find the optimal |Ω|. This search terminates when |S| 

and |Ω| are both unchanged. To avoid local minima, this procedure may be repeated several times starting from 

different initializations. Experiments suggest that this iterative approach obtains a satisfactory result relative to 

jointly searching over both parameters. An example of determining |S| and |Ω| of metal mines using the iterative 

approach is shown in Fig. 6 (after convergence), in which we choose |S|=9 for a fixed codebook size |Ω|=10 and 

choose |Ω|=10 for a fixed number of states |S|=9. Note that in Fig. 6(b), the marginal likelihood remains stable 

when |Ω|≥10; we select |Ω|=10 as the best choice according to Ockham’s razor [19] which suggests that the 

simpler model is preferred for the same evidence. 

Fig. 5. Candidate models for different number of states |S|=1,5,9,13,…. 

|S|=1 |S|=5 |S|=9 |S|=13 

…
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For any given type of mine or clutter, the number of target states |S| is determined as described above. At the 

same time, the optimal state sequence of the target can also be estimated by the Viterbi algorithm [8], which 

gives an idea about the size (radii) of the annuli. By estimating |S| and the annulus radius for each of the five 

types of mines and clutter discussed above, we define a total of 29 states as described in the next subsection. 

Similarly, we determine |Ω|=12 for both EMI data and GPR data. 

 

 

 

 

 

 

 

 

 

3.6 Estimation of T and O 

Across all five types of mines and clutter considered, we define a total of 29 target states, i.e., S={1,2,…,29}. 

The 29 states are divided into 5 disjoint subsets: UUUU cttpm SSSSSS 21= , denoting respectively states of 

metal mines, plastic mines, Type-1 clutter, Type-2 clutter, and “clean”; the number of states in each of the five 

subsets is 9, 9, 9, 1 and 1, respectively. The definition of the states is illustrated in Fig. 7(a). 

The two sensing actions in which the robot does not move (the “stay” action) do not cause target state transitions; 

hence ),,( ⋅⋅ aT  is an identity matrix when a is “stay and sense with GPR” or “stay and sense with EMI”. All 

remaining sensing actions can result in transitions from one target state to another. Assuming that the robot 

travels the same distance δ in each step and that the robot’s position is uniformly distributed in any given state, 

the probabilities of these transitions are directly determined by using an elementary geometric computation. 

Figure 7(b) illustrates how the transition probabilities )',,5( sasT =  for the two sensing actions involving 
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Fig. 6. Example of model evidence (marginal likelihood) for model selection. (a) Selection of the number of 
states when the codebook size is |Ω|=10; the maximum evidence occurs at |S|=9. (b) Selection of the codebook 
size when the number of state is |S|=9. The evidence remains stable after |Ω|=10. In both figures, the model 
evidence is the logarithm of the marginal likelihood, apart from a constant. 
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“walk south” are computed. Figure 7(c) is a partial graph of the state transitions of the model, which only shows 

states 1 to 9 (metal mine states) and state 29 (“clean”), when the action involves “walk south”. If we assume that 

a mine or clutter is buried separately (no overlap), the transition-probability matrix ),,( ⋅⋅ aT  related to a “move 

and sense” action is block diagonal (i.e., a state transition happens only within each target) except that “clean” 

(state 29) could transit to or from the states of other types of targets (this is why Type-2 clutter is modeled by a  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. State definition and transition-probability estimation for the landmine-detection problem. (a) Definition of the 
states. Metal mine, plastic mine and Type-1 clutter (large-sized metal clutter) are each modeled by 9 states, indexed 1 to 
9, 10 to 18, and 19 to 27, respectively; Type-2 clutter (small-sized metal segment) is modeled by a single state (state 28); 
state 29 is used to indicate “clean” (i.e., there are no mine or mine-like objects buried underground). (b) Illustration of 
the geometric method in computing the state-transition probabilities T(s=5,a,s’) when a is one of the two sensing actions 
involving “walk south”. It is assumed that the robot travels the same distance in each step and that the robot’s position is 
uniformly distributed in any given state. σ1, σ2, σ3 and σ4 denote the 4 borders of state 5, as well as their respective area 
metric. (c) Partial graph of state transitions of the model. This graph shows state transitions within states 1 to 9 (metal 
mine states) and state 29 (“clean”), when the action involves “walk south”. The bold arrows denote transitions with 
relatively high probability, while the thin arrows represent low-probability transitions.  
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single state; there is a possibility to transition to this state from “clean”). From this point of view, the model can 

easily be expanded by adding more diagonal blocks. Each block corresponds to one target considered in the 

model. This property is important for the lifelong-learning algorithm considered in the next section. 

The observation functions ),',( osaO  are estimated similarly by using the geometric computation based on the 

state definitions and discrete observations resulting from vector quantization. The codebook size is 12 for both 

EMI and GPR data (24 codes in total). The sensing actions involving the same type of sensor share the same 

observation probability, independent of the directions in which the robot moves. 

Computing )',,( sasT  and ),',( osaO  requires prior knowledge of the possible mines and clutter, and therefore 

we assume access to examples of possible mines and clutter. The assumption of access to such a training set is 

removed in Section IV when addressing lifelong learning. 

3.7 Specification of reward R 

The reward function R considered in the subsequent examples is defined in Table 2. 

Table 2: Reward function R, where the states here correspond to the possible environmental states SE. 

Action   
State Sensing Declare 

“metal mine” 
Declare 

“plastic mine”
Declare 

“Type-1 clutter”
Declare 

“Type-2 clutter” Declare “clean”

Metal mine -1 +10 +5 -100 -100 -100 
Plastic mine -1 +5 +10 -100 -100 -100 
Type-1 clutter -1 -50 -50 +10 +5 +5 
Type-2 clutter -1 -50 -50 +5 +10 +5 
Clean -1 -50 -50 +5 +5 +10 

All sensing actions have a cost of -1, although in general, we can set different costs for the two sensors. In this 

paper we set them equal to see how the policy selects sensors for different type of targets, without the 

disturbance of cost differences. 

For the declaration reward, intuitively, correctly recognizing a target should get a positive reward; partially 

correct declaration, which means the robot is confused between types of mines, or between types of clutter, but 

not between mines and clutter, gets a less positive reward; missing a landmine or declaring a landmine as clutter 

should have a very large penalty, and declaring a clutter as a landmine also has a large cost, but less than a 

missed mine. The units in Table 2 are arbitrary, and we note that a different reward structure may readily be 

considered, resulting in a new policy. In this sense, the manner in which the reward structure is defined 

constitutes the subsequent policy.  
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IV. Lifelong Learning: Exploration and Exploitation 

All discussions thus far assumed accurate knowledge of the POMDP model. It was therefore assumed that we 

have a complete training data set, which describes the properties of all mines and clutter (including the soil 

properties) that may be encountered. It has been assumed that a reliable POMDP model is built from the training 

data, from which the policy is learned, and this policy is exploited when sensing. Stated succinctly, the 

exploration and exploitation phases have been assumed to be separable and distinct. The system first obtains 

labeled training data (exploration) with which the POMDP model is learned and the policy is designed. The 

policy is then exploited subsequently when detecting landmines, and this policy is not refined during this latter 

process. 

The assumptions inherent to the POMDP setting are often not easily satisfied. In many scenarios the training 

data cannot be provided in advance; the robot is required to learn the model and policy by exploring the 

environment itself. In this situation the training phase and the detection phase become one overall process, with 

exploration and exploitation performed jointly. In other cases, even though a model and a policy could be 

learned beforehand, the model may not be good enough or appropriate for future sensing. For example, some 

new targets are frequently encountered in the detection phase; hence, the robot should consider adding a new 

target into the existing model and possibly de-emphasizing models of mines and clutter that are not observed 

when sensing. It is desirable for the robot to modify its understanding of the environment online during its 

detection phase, this termed “lifelong learning” [14,20,21].  

In this section we investigate a method for learning the model by an online approach, i.e., the robot learns the 

model at the same time as it moves and senses in the mine field (combining exploration and exploitation). By 

this approach, the model size (number of states |S| and discrete observations |Ω|), model parameters (transition 

probability T and observation function O) and optimal policy are updated online during the learning process. 

The algorithm given below is motivated and modified from the MEDUSA algorithm [14]. 

4.1 Dirichlet distribution 

We first review the Dirichlet distribution, which is an important tool for the lifelong-learning algorithm that 

follows. The Dirichlet distribution is the conjugate prior of the multinomial distribution [22]. The multinomial 

distribution is a discrete distribution that gives the probability of choosing a given collection of m items from a 

set of n items, with repetitions; the probabilities of the n items are given respectively by p=(p1,…pn). 

Probabilities n
iip 1}{ =  are the parameters of the multinomial distribution; n

iip 1}{ =  are the random variables of the 

Dirichlet distribution, which will serve as a prior for p. 
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The probability density of the Dirichlet distribution for random variables p=(p1,…pn) with parameters 

u=(u1,…un) is defined by  
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The mean of the Dirichlet distribution is  
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Given iid data y={y1,…,ym} drawn from a multinomial distribution with parameters p, with prior on p 

represented by Dir(p;u), the posterior distribution of p is represented by an update of the Dirichlet distribution, 

)~;( upDir , which is computed by the counting process: 

  ∑ =+=
=

m

j
jii iyindicatoruu

1
)(~ , for i=1,…,n,      (4.3) 

where indicator(z)=1 if z is true, and  indicator(z)=0 otherwise. 

From a Bayesian view the parameters ui can be interpreted as prior observation counts for events governed by pi. 

When ui is large, the prior knowledge dominates the posterior distribution; alternatively, if ui is a small number 

we put more trust in the observed data. 

4.2 Lifelong-learning algorithm 

The lifelong-learning algorithm borrows ideas from Bayesian theory, in that we constitute a posterior 

distribution over possible POMDP models, based on prior intuition as to what models are appropriate, and based 

on the observed data. A flowchart of the lifelong-learning algorithm is shown in Fig. 8. 

Given the current target state s and an action a, the next state 's  can be seen as a draw from a multinomial 

distribution with parameters   

  ),,(),|'(,,
ii

asT
i sasTassspp === , for ||,...,1 Si = ,     (4.4) 
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with ∑ =
=

||

1

,, 1
S

i

asT
ip . Similarly, for a given action a and state 's , the observation o is a draw from a multinomial 

distribution with parameters 

  ),',()',|(,',
ii

asO
i osaOsaoopp === , for ||,...,1 Ω=i .    (4.5) 

The goal of lifelong learning is to learn these multinomial parameters in the state-transition probability T and 

observation function O. Based on the discussion in Section 4.1, for each state-action pair in the transition 

probability T or the observation function O, a Dirichlet prior is assigned 

  );(~),,( ,,
,,

asT
asTDirasT up⋅ ,        (4.6) 

  );(~),',( ,',
,',

asO
asODirsaO up⋅ .       (4.7) 

Learning is a process of continuously updating the hyper-parameters asT ,,u  and asO ,',u .  

We also assume an “oracle” is available, which can provide the label (identity) of the underground target 

currently under interrogation, on request. The best “oracle” is implemented by excavating an item of interest 

(e.g., by a human operator). Note that in the landmine-sensing problem, for which the true labels can be 

acquired via excavation, the use of an “oracle” is practical, albeit expensive, with the cost of oracle deployment 

accounted for in the algorithm. If a new type of mine or clutter is excavated during this process, a new class of 

models is added. If the mine/clutter type has been seen previously, the associated model is refined based upon 

the new measured data. 

An oracle query is performed if one of the following conditions is satisfied. First, if the policy says that the 

oracle query is the optimal action at the current step. Secondly, if the agent finds a new observation that has 

never been seen before; this is totally new knowledge and is unaccounted for in the existing model. Thirdly, if 

the agent has measured extensively in a sub-area (the area from the last declaration position to the current 

sensing position within the lane, as defined in Section V) and still cannot make a decision about the 

underground target, which means the current task is too difficult for the agent. 

When an oracle query is required, the robot senses its local area on a grid using the two sensors, such that it 

collects as much information of the unknown object as possible, and then the label is revealed via the oracle 

(excavation). The size and position of the grid-sensing region is determined by the energy distribution in the 

local area. In general, if the energy and energy gradient are small in both the EMI signal and GPR signal, it is 
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reasonable to consider the current point as the edge of an underground target, and hence the edge of the grid-

sensing region. The “label” includes the type of mine or clutter, size and position of the target, and the reward 

values when declaring it correctly or incorrectly. If the target is new, a sub-model is then built, similar to the 

discussion in Section III, using the grid-sensing data and the label information; the sub-model is a subset of the 

entire model, composed of those states and observations related to the current target. Note that in the sub-model, 

we learn the Dirichlet hyper-parameters which represent the posterior distributions of T(sub-model) and O(sub-model) 

(as computed using variational Bayes). 

There are two learning approaches in the proposed algorithm. When an oracle query reveals the target type to be 

a new one, the algorithm expands its model by adding the new target type into the existing model. This is done 

by increasing S and Ω (if necessary), and adding a new diagonal block in the transition probability T (see 

Section 3.6) and new states (and observations) in the observation function O. The associated hyper-parameters 

are expanded at the same time. If according to an oracle query, the algorithm finds that the revealed target type 

is a familiar one, it updates the model hyper-parameters for this target type, at learning rate λ: 

  )'()'()'(~ )(
,,,,,, sususu elmodsub
asTasTasT
−+= λ ,      (4.8) 

  )()()(~ )(
,',,',,', ououou elmodsub
asOasOasO
−+= λ ,      (4.9) 

where )(
,,

elmodsub
asT
−u  and )(

,',
elmodsub

asO
−u  are the sub-model hyper-parameters learned from the measured data for 

current target type, asT ,,u  and asO ;,,u  are the old hyper-parameters for the existing model, and  asT ,,
~u  and asO ;,,

~u  

are the updated hyper-parameters for the posterior distributions. The above two learning approaches are based 

on the assumption that the state definition is exclusive for each target type and the state transition happens only 

within each target type. The learning rate λ balances the importance between the prior knowledge (existing 

model) and the new observations from an oracle query. If λ=0, the agent never updates the model, and if λ→∞, 

the posterior is entirely decided by the new observations.  

Based upon the data observed thus far, we have posterior distributions for the transition probability T and 

observation function O, across all targets observed thus far; these posteriors represent our state of knowledge 

about the scene under test. To make the analysis practical, we now sample N sets of parameters from the 

posteriors, constituting N POMDP models that, for sufficiently large N, capture the uncertainty with regard to 

the properties of the mines and clutter. These sampled POMDP models are then used to constitute N associated 

policies. At each sensing step, the agent has N optimal actions N
iia 1}{ =  to choose from, coming from the N 
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policies. The agent picks one action among them as follows. Let the history ,...},,,{ 2211 oaoah =  record the 

action-observation sequence as the agent experiences the environment. Denote weights N
iiw 1}{ =  as the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 8. Flowchart of lifelong learning in the landmine-detection problem. 

Initialization: 
• Imperfect model M0, containing “clean” and some mine or clutter types, with the 

corresponding S and Ω; S and Ω could be expanded in the learning process; 
• Add “oracle query” as one possible action; 
• Set learning rate λ; 
• Set Dirichlet prior on the parameters of the imperfect model M0: 

);(~),,( ,,
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asO

asODirsaO up⋅ ; 
• Sample N models N

iiM 1}{ =
, solve policies N

ii 1}{ =π ; 
• Initialize the weights wi=1/N; 
• Initialize the history h={}; 
• Initialize the belief state b0 for each model. 

Oracle query ? 

Y 

• Sense current local area on a grid; 
• Return current target label; 
• Build the sub-model for current target 

and compute the hyper-parameters. 

New target type ? 

Y 
Expand model by including 
the new target type.  

N 

Update the Dirichlet parameters of the 
current target type: 

)'()'()'(~ )(
,,,,,, sususu elmodsub
asTasTasT
−+= λ  

)()()(~ )(
,',,',,', ououou elmodsub
asOasOasO
−+= λ  

N 

• Take action a 
• Receive observation o  
• Update belief state for each sampled model 
• Update the history },,{ oahh ←  

Update the weights  

Prune ?

Y

N

• Remove the model samples with the lowest weights and redraw new ones; 
• Solve the new model policies; 
• Update the belief according to the history h until current time; 
• Recompute the weights according to the history h until current time. 

Compute the optimal actions for each model: ai =πi(bi) for i=1,…,n;
Pick an action a according to the weights wi: p(ai)=wi. 
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normalized likelihood of the history h for each of the N models, computed at each step using the forward-

backward algorithm [8] and normalized such that 

∑ =
=

N

i
iw

1
1 . Then the agent randomly chooses an action to execute according to the weights N

iiw 1}{ = , i.e., 

,)( ii wap = for i=1,…N. Furthermore, at regular intervals, the agent removes the model samples with the 

lowest weights (below a prescribed threshold), and draws new models according to the current model hyper-

parameters. During the processes of updating the hyper-parameters by oracle queries, picking actions by the 

weights, and pruning the low-weight model samples, the agent gradually focuses on the model sample which 

best represents the true characteristics of the underlying environment. 

The PBVI algorithm [15] is applied to the POMDP models built according to the methods discussed in Sections 

III and IV, to learn the policies; when implementing PBVI, the belief samples are obtained by belief expansion 

once every 15 iterations, and a total of seven expansion phases result in approximately 3000 belief points for 

policy learning. 

V. Experimental Results 

The robot is navigated in three simulated mine fields. The EMI and GPR data are pre-collected  over a 

1.6×1.6m2  per simulated mine field, with sensor data collected at a 2 cm sample rate in two coordinate 

dimensions. The pre-collected data are used to simulate the data collected by an autonomous two-sensor agent, 

as it senses within the mine field. The three simulated mine fields are shown below in Figs. 11, 13 and 14. 

Clearly, to avoid missing landmines the robot should search almost everywhere in a given mine field. However, 

we hope that the robot can actively decide where to sense as well as which sensor to use, to minimize the 

detection cost. Considering these two requirements together, we assign a “basic path” as shown in Fig. 9 (dark 

blue curve with arrows). The “basic path” defines the lanes as indicated by light blue in the figure, and the robot 

is restricted to take actions within the lanes. The “basic path” restrains the robot from moving across the lanes, 

and the robot defines sectors along each lane as being characterized by one of the mines/clutter, including 

“clean”, while moving in an overall direction consistent with the arrows in Fig. 9. The distance between two 

neighboring “basic paths” should be less than the diameter of a landmine signature. 

It is possible that after many measurements in one local area, the agent still cannot make a declaration. For 

example, this can occur if the model we build does not fit the data in this area, possibly because our model does 

not include the current underground target. More measurements do not help to make a better decision. If this 

happens, it is better to say “I do not know” rather than continue sensing or make a reluctant declaration. We let 
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the robot declare “unknown” in this situation, while in the lifelong learning algorithm the “oracle” is employed. 

 

 

 

 

 

 

 

5.1 Detection performance of the offline-learning algorithm 

In the offline-learning approach the training data are given in advance, and the training phase and test phase are 

separate. We use Mine Field 1 (Fig. 11) as the training data to learn the model and the policy, and then test our 

method on all three mine fields. The training data and test data match well in that the three mine fields contain 

almost the same types of metal mines, plastic mines and clutter. The clutter includes metal clutter (soda can, 

shell, nail, coin, screw, lead, rod, and ball bearing) and nonmetal clutter (rock, bag of wet sand, bag of dry sand, 

and a CD). Note that we consider many types of clutter items, and these all fall within the broad classes 

discussed in Section III. 

5.1.1 Model training and policy design 

Using Mine Field 1 as the training data set the POMDP model is built according to Section III, and the policy is 

learned by PBVI. The number of sensing actions and the correct declaration rate as a function of iteration 

number when determining the policy are plotted in Fig. 10. The correct declaration rate is defined as the ratio of 

the number of correct declarations relative to the number of all declarations. Note that the correct rate is not 

equivalent to probability of detection since one landmine could be declared multiple times, and the correct 

declaration of clutter or “clean” is also counted in the correct rate. However, it does reflect the detection 

performance by comparing declaration position and ground truth. From Fig. 10, after 75 iterations and five 

belief expansion phases, the PBVI-learned policy becomes stable. 

5.1.2 Landmine detection results  

Fig. 9. Robot navigation path in a mine field. The dark blue curve is the “basic path”, 
which defines the lanes as indicated by light blue. The robot is restricted to move 
along the lanes by taking actions within the lanes. The “basic path” restrains the 
robot from moving across the lanes. 
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The stationary policy from the last subsection is then used to navigate the robot in the three simulated mine 

fields. The ground truth and detection results are summarized in Table 3. As an example, the layout of Mine 

Field 1, the declaration result and a zoom-in of sensor choices are shown in Fig. 11. Note that one target may be 

declared several times. 

Table 3: Ground truth and detection results on three mine fields 

  Mine Field 1 Mine Field 2 Mine Field 3 
Number of mines (metal + plastic) 5  (3+2) 7  (4+3) 7  (4+3) Ground truth Number of clutter (metal + nonmetal) 21  (18+3) 57  (34+23) 29  (23+6) 
Number of mines missed 1 1 2 Detection result Number of  false alarms 2 2 2 

Missed landmines are usually caused by one of the following two reasons: the mine has very weak signal in both 

EMI and GPP responses, such as a small anti-personnel mine, which is a low-metal content mine; or the mine is 

very close to a large metal clutter, so that the clutter’s strong response hides the weak signal of the mine. 

From Fig. 11(c), we see that the policy selects GPR sensors to interrogate plastic mines, while it prefers EMI 

sensors when metal mines are present. This verifies the policy to some degree since the EMI sensor is almost 

useless for detecting plastic mines, but is good for detecting metal mines. We also see that on the “clean” area or 

at the center of a landmine, a declaration is made only based on very few sensing actions, usually two or three, 

since it is relatively easy for the robot to estimate its current states. However, at the edge of a landmine, where 

there is an interface between two objects (the landmine and the “clean”), the robot usually requires many 
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Fig. 10. Detection performance as a function of number of iterations when learning the policy. (a) Number of 
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sensing actions to make a declaration. 

The robot requires, on average, approximately 4500 sensing actions in one mine field; the correct declaration 

rate is about 0.87 (see Fig. 10). As a comparison, if a myopic policy is applied, where the agent considers only 

one step ahead to select actions, a total of around 8000 sensing actions are needed, and a correct declaration rate 

of 0.82 is achieved. Note that if one senses on every grid point using both sensors, the total number of 
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Fig. 11. Ground truth and detection details in Mine Field 1. (a) Ground truth. The red circles are landmines, with 
“M” and “P” indicating metal mine and plastic mine, respectively; the other symbols represent clutter. Black dots 
are small metal segments and the rest are large-sized metal or nonmetal clutter. (b) Declaration result. The blue “C” 
means a declaration of “clean”, the green “?” means “unknown”, and the stars with various colors represent 
declarations of mines or clutter. Red star: metal mine; pink star: plastic mine; yellow star: Type-1 clutter; cyan star: 
Type-2 clutter. (c) Sensor choice in the broken-lined rectangular area shown in (b). The black square means 
sensing with EMI sensor and the green circle means GPR sensor. It can be seen that the policy prefers the GPR 
sensor for plastic mine (left half in (c)) and the EMI sensor for metal mine (right half in (c)). 
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measurements is 2×8002 = 12800. 

5.2 Detection performance of the lifelong-learning algorithm 

In the lifelong-learning approach the training and the test phases are integrated, and the model and the policy are 

updated online during the combination of exploration and exploitation. We let the robot move in Mine Field 1, 

navigated by the policies within the lanes defined by the “basic path”. We set the learning rate as λ=1, the 

number of model samples as N=10, and the cost of the oracle query as r=–80. The other reward values are the 

same as discussed in Section 3.7. At the beginning, the imperfect model includes only the “clean” situation, i.e., 

one state and several observations; we therefore assume no knowledge of the mines or clutter. The results of the 

lifelong learning in Mine Field 1 are shown in Fig. 12, where (a) shows the positions of the oracle queries and 

the other declarations when the robot explores and exploits the environment, and (b) is the average error of the 

model learned by the lifelong learning relative to an “ideal model”. Here the “ideal model” is assumed to be the 

one we obtained by offline approach in Section 5.1.1; the average error is defined as the average value of the 

absolute differences between the learned model parameters (the means of the parameter distributions) and the 

corresponding “ideal model” parameters. 

In Fig. 12(a), each rectangle represents an oracle query and its grid-sensing region. It can be seen that at the 
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Fig. 12. Detection results of the lifelong learning in Mine Field 1. (a) Oracle queries and other declarations. Each 
red rectangle represents an oracle query and the corresponding grid-sensing region. Other marks are declarations: 
blue “C” -- “clean”, red star -- metal mine, pink star -- plastic mine, yellow star -- Type-1 clutter, and cyan star --
Type-2 clutter. The ground truth of the mine field is shown in Fig. 11(a). (b) Average error between the learned 
model and the model obtained by offline learning. The three big error drops at steps around 300, 1500 and 2000 
correspond to finding new target types and adding them to the model. 
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beginning (left part of the Fig. 12(a)) of the learning, many wrong “Type-2 clutter” declarations are made. After 

learning more, there are fewer wrong declarations. The model is expanded by adding two mine types, two clutter 

types and more observations in the earlier period of the learning. This is also demonstrated by the big decrease 

in the average error in Fig. 12(b). Later the model hyper-parameters are updated when necessary, according to 

oracle queries, and the model becomes increasingly accurate. Note that the learning process does not end, even 

though the robot finishes exploring all of Mine Field 1. When a new task comes, the robot continues to modify 

the model parameters if the old model does not fit the new mine field. 

Assume that the robot meets Mine Field 2 and then Mine Field 3 after it learned the model in Mine Field 1. 

Mine Field 2 and Mine Field 3 contain the same types of mines and clutter learned previously. Figure 13(a) is 

the ground truth of Mine Field 2, and (b) shows the associated detection results. With one missed mine and two 

false alarms (the same as in Table 3), the results demonstrate the performance of the lifelong learning. The 

detection result of Mine Field 3 (see Fig. 14) also yields a result similar to the offline approach in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

Finally, we discuss the immediate reward. It is assumed that during the exploitation in a mine field, the agent 

does not know the immediate reward after each declaration. Under this assumption, all the reward values the 

(a) (b)

Fig. 13. Detection results of the lifelong learning in Mine Field 2 after the algorithm has learned the model from 
Mine Field 1. (a) Ground truth. The red and blue circles are landmines, with “M” and “P” indicating metal mine 
and plastic mine, respectively; the other symbols represent clutter. Black dots are small metal segments and the 
rest are large-sized metal or nonmetal clutter. (b) Oracle queries and other declarations. Each red rectangle
represents an oracle query and the corresponding grid-sensing region. Other marks are declarations: blue “C” --
“clean”, red star -- metal mine, pink star -- plastic mine, yellow star -- Type-1 clutter, and cyan star -- Type-2 
clutter.  
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agent knows come from the initial model and oracle queries. This agrees with a practical situation for which the 

robot does not know if its decision is correct or incorrect immediately after each declaration. Note that if we 

discard this assumption, the learning will be more efficient, since the agent could evaluate its performance by 

checking the immediate reward it received, and adjust its learning strategy. For example, if the error rate is high, 

the agent could consider taking more oracle queries to improve the model. If a certain declaration often causes a 

penalty, the agent should be careful that the model for this target might be poor. 

 

 

 

 

 

 

 

 

 

 

 

5.3 The importance of setting the reward function 

Setting the reward function is important to producing a good policy. An inappropriate reward function causes a 

poor policy, and thus unsuccessful detection, even if the model is perfect. In a simulated experiment, the reward 

function can be set using a trial-and-error method or by experience. In a real problem, the reward value can be 

estimated by its real cost, although it is often very difficult to quantify costs or rewards. 

Consider the critical role of the penalty when the robot misses a landmine. Refer to the previous setting in 

Section 3.7, where this penalty is -100. Suppose we keep the other reward values the same, but let this penalty  
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Fig. 14. Detection results of the lifelong learning in Mine Field 3. (a) Ground truth. The red circles are 
landmines, with “M” and “P” indicating metal mine and plastic mine, respectively; the other symbols represent 
clutter. Black dots are small metal segments and the rest are large-sized metal or nonmetal clutter. (b) 
Detection result. Each red rectangle represents an oracle query and the corresponding grid-sensing region. 
Other marks are declarations: blue “C” -- “clean”, red star -- metal mine, pink star -- plastic mine, yellow star -
- Type-1 clutter, and cyan star -- Type-2 clutter. 
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vary from -10 to -1000. Given Mine Field 1 as the training data, the model and the corresponding policies are 

learned and the robot executes the policies when detecting in the same mine field. The plots of the cumulative 

reward, the correct declaration rate, and the average number of sensing actions to make one declaration as a 

function of the penalty are shown in Fig. 15. From these figures, the cumulative reward reaches a peak value 

when the penalty is around -100. The correct declaration rate increases as the penalty increases, achieves 

maximum at a penalty of around -100, and then slightly decreases when the penalty is higher. The average 

number of sensing actions for one declaration increases monotonically. These results are consistent with our 

intuition. If the penalty is too low, the agent does not care if a landmine declaration is correct or wrong, so it 

makes many wrong declarations with few sensing actions. On the contrary, if the penalty is high, the number of 

Fig 15. The importance of setting an appropriate penalty of missing a landmine. (a) Cumulative reward of 
detecting the entire mine field. (b) Correct declaration rate. (c) Average number of sensing actions to make one 
declaration. In all the three figures, the values are evaluated at penalties {10, 20, 40, 70, 100, 150, 200, 500, 
1000}.  
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sensing actions must increase to make the declarations more accurate. In addition, missing a landmine is more 

costly compared to other declarations, and hence the agent would rather declare an object as a landmine than 

miss it, thus causing an increase of false alarms. The sensing cost and the false alarm penalty both reduce the 

cumulative reward. 

VI. Conclusions 

We have addressed the problem of employing ground-penetrating radar (GPR) and electromagnetic induction 

(EMI) sensors placed on a single platform, with the objective of performing adaptive and autonomous sensing of 

landmines. The problem has been formulated in a partially observable Markov decision process (POMDP) 

setting, under two distinct assumptions. In the first case we have assumed adequate and appropriate data for 

learning of the underlying POMDP models, with which policy design can be effected. The assumption that such 

data are available is often inappropriate, and therefore we have also considered a lifelong-learning algorithm in 

which little if any a priori information is assumed with regard to the mines, clutter and soil conditions. The 

formulation considered for this latter case has been based on the recently developed MEDUSA algorithm [14]. 

The algorithms have been tested, with encouraging performance, on measured EMI and GPR data from 

simulated mine fields. 

The principal limitation of the approach developed here is the computational cost of implementing the POMDP 

policy. For the lifelong-learning algorithm addressed in Section 4.2, we sampled N=10 POMDP models, these 

characterized on average by 29 target states, 24 discrete observations, and 16 actions. The PBVI policy design 

required on average 58 minutes of CPU for each of these models (on a 3.06 GHz PC). Therefore, the principal 

challenge going forward is found in increasing the computational speed of policy design; there have been many 

recent improvements in POMDP policy design that will significantly accelerate the speed of policy design (see 

[23] and the references therein). 
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