
HOMOTOPY-BASED SEMI-SUPERVISED HIDDEN MARKOV TREE
FOR TEXTURE ANALYSIS

Nilanjan Dasgupta, Shihao Ji, Lawrence Carin

Department of Electrical and Computer Engineering, Duke University, NC 27708

ABSTRACT
A semi-supervised hidden Markov tree (HMT) model is developed
for texture analysis, incorporating both labeled and unlabeled data
for training; the optimal balance between labeled and unlabeled data
is estimated via the homotopy method. In traditional EM-based
semi-supervised modeling, this balance is dictated by the relative
size of labeled and unlabeled data, often leading to poor perfor-
mance. Semi-supervised modeling may be viewed as a source al-
location problem between labeled and unlabeled data, controlled by
a parameterλ ∈ [0, 1], whereλ = 0 and1 correspond to the purely
supervised HMT model and purely unsupervised HMT-based clus-
tering, respectively. We consider the homotopy method to track a
path of fixed points starting fromλ = 0, with the optimal source
allocation identified as a critical transition point where the solution
is unsupported by the initial labeled data. Experimental results on
real textures demonstrate the superiority of this method compared to
the EM-based semi-supervised HMT training.

1. INTRODUCTION

Semi-supervised learning exploits both labeled and unlabeled data to
estimate parameters of an underlying model, yielding natural adap-
tivity to new unlabeled data. Labeled data are generally expensive
to acquire and are often sparse, while unlabeled data are relatively
inexpensive to acquire and therefore are often abundant. Presuming
the existence of an underlying structure in the data, unlabeled sam-
ples may provide information about the data manifold, and they may
be used to regularize a purely supervised solution. A conventional
approach for parameter optimization with a generative model (e.g.,
HMTs), incorporating both labeled and unlabeled data, is touse the
expectation-maximization (EM) algorithm [1], in which thelabels of
the unlabeled data are treated as hidden variables, and the optimality
criterion is the likelihood maximization of both labeled and unla-
beled data [2]-[3]. However, the EM approach for semi-supervised
learning is unstable, and Nigamet al. [3] proposed a heuristic way
to alleviate the instability by weighting the contributionfrom the un-
labeled data, while the choice of suitable scaling parameter remains
an important issue. Corduneanuet al. [4] proposed the homotopy
method for stable estimation of a naive Bayes classifier, where the
optimal scaling parameterλ is selected at the point at which a crit-
ical transition occurs in the homotopy. We propose the homotopy
method, a generalization of continuation [5], as an alternative to the
EM-based solution for both supervised and semi-supervisedHMTs
in the context of texture classification, along with estimating the op-
timal balanceλ specific to semi-supervised modeling. We present
an overview of the HMT model and associated EM update equations
in Sec. 2. The homotopy method is presented in Sec. 3, followed by
its application to HMT parameter estimation in Sec. 4. Quantitative
performance analyses of the proposed approach and conclusions are
presented in Sec. 5 and 6, respectively.

2. WAVELET-BASED HMT MODEL AND EM-BASED
PARAMETER ESTIMATION

Consider an imageIcd, sampled uniformly in two dimensions. Defin-
ing LL0

cd = Icd, a sequentialν-level wavelet decomposition ofIcd

yields four subsampled images:LLν
cd, HL

ν
cd, LH

ν
cd, andHHν

cd.
Each point inHLν

cd, LH
ν
cd, andHHν

cd corresponds to the root node
of a wavelet tree [6], and each node within a tree has four children
at the next finer level (hence termed quadtrees). Each quadtree cor-
responds to a2ν × 2ν block in the original imageIcd [7], and our
objective is to obtain a parametric model that captures the underlying
statistics within the wavelet quadtrees.

The HMT is a statistical model that assumes a Markovian rela-
tionship between any wavelet node with its parent within a quadtree
[6]. For simplicity theHH , HL andLH quadtrees are treated as
statistically independent, and each node in a quadtree is modeled by
a hiddenM -state process, with each state represented by a Gaus-
sian distribution parameterized by its mean and variance. Crouseet
al. [6] developed an EM algorithm obtaining amost likelyestimate
of the model parametersθy = {πy

m, ǫ
y
t,k,l, µ

y
tm, σ

y
tm} for texturey

with m,k, l ∈ {1, · · · ,M}, andt, t′ ∈ {1, · · · , R} representing
indices of the wavelet nodes numbered sequentially from theroot to
the leaves. The termπy

m denotes the probability of hidden statem
associated with the root node, andǫy,k,l

t,t′
defines the transition prob-

ability to hidden statest (= k) from its parent (= l). The termsµy
tm

andσy
tm denote the mean and variance of the Gaussian distribution

representing themth state of thetth wavelet node. We have three
such independent models for each texture, one for each subband, but
we suppress band-specific notation here for simplicity.

Assume we haveL labeled texture blocks{(x1, y1), · · · , (xL, yL)}
andU unlabeled texture blocks{xL+1, · · · ,xL+U}, where each
xi corresponds to three quadtrees one for each subband. For both
labeled and unlabeled texture blocks the associated wavelet coeffi-
cients are observable, whereas the underlying Markov states are hid-
den. In the context of classification amongC textures, we employ
distinct HMT models, one for each texture, and we wish to estimate
the joint set of model parametersΘ = {wy , θy}C

y=1 based on the set
of labeled and unlabeled data, wherewy represents the probability of
class membership. Assuming thatλ represents the balance between
labeled and unlabeled data, the semi-supervised EM updates[8] for
Θ can be written as
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whereγi,y
1,m = p(s1 = m|xi, y), ξ

i,y
t,k,l = p(st = k, sparent(t) =

l|xi, y). The update for the Gaussian parameters (meanµy and vari-
anceσy) [8] are not shown here for brevity. The above equations
only present the M-step of the EM algorithm [1] for a particular
iteration, whereas the E-step involves evaluatingγ, ξ and p(y|x)
in terms of model parametersΘ, estimated at the previous itera-
tion. Note that ‘∼’ in the LHS of the first two expressions denote
unnormalized model parameters which are subsequently normalized
during the E-step [6]. Iterative refinement of the model-parameters
based on the E and M step yields a guaranteed convergence (albeit
a local optima) on parametersΘ. Note that the above expressions
assumeλ to be knowna priori, generally set toU/(L + U) for
semi-supervised EM modeling [8]. As an alternative, we propose the
homotopy method for optimizing the HMT parameters, along with
obtaining an optimal balanceλ between the labeled and unlabeled
data.

3. HOMOTOPY METHOD

The theory of the globally-convergent homotopy method involves
finding zeros or fixed points of nonlinear system of equations[5],[9].
Rather than solving an original difficult problemF (Θ) = 0 directly,
we start from an ‘easy’ problemG(Θ) = 0 having a known solution
(or roots). We then track the solution while gradually transforming
the ‘easy’ problem into the original one. A simple choice of the
transformation function is

H(Θ, λ) = (1 − λ)(Θ − a) + λF (Θ) = 0, (2)

wherea ∈ Rn andF : Rn → Rn is the original system of equa-
tions we want to solve, withλ ∈ [0, 1] being a scalar parameter.
Starting from a ‘trivial’ solution (Θ = a, λ = 0), we gradually
track the solution ofH(Θ, λ), with a final objective of obtaining
(Θ = Θ

∗, λ = 1) (F (Θ∗) = 0). The solution ofH(Θ, λ) = 0 is
a trajectory, found by solving the differential equation
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with initial conditionsλ = 0 and Θ = a. The tangent vector
[Θ̇ λ̇]T lies in the one-dimensional null space ofJ (J is always full
rank along the path [9]), and the direction is chosen to maintain an
acute angle with the previous tangent vector (initial tangent direction
is chosen to bėΘ = 0 andλ̇ = 1).

4. HOMOTOPY METHOD FOR HMT MODELING

4.1. Supervised HMT modeling

The homotopy method may be employed as an alternative to the EM-
based parameter estimation for most generative models. In apurely
supervised environment, a generative model is trained exclusively
on data from one particular class (a particular texture in our prob-
lem). This is a special case of the semi-supervised scenarioshown
in Eq. (1) with λ = 0. In addition,wy is irrelevant here since
data from only a single class is present. Purely supervised fixed-
point EM expressions of Eq. (1) may be written in a concise form
asθy = EM0(θ

y) (for texture class ‘y’), whereθy andEM0(θ
y)

represent the LHS and RHS of Eq. (1) forλ = 0. Analogous to Eq.
(2), the supervised HMT expressions may be written in terms of the
transformation functionH as

H(θy, λ) = (1 − λ)(θy − θ0) + λ(θy − EM0(θ
y)) = 0 (4)

whereθ0 represents initialized HMT parameters. Note thatλ used in
Eq. (1) and (4) have different meanings since they are used for semi-
supervised and supervised EM updates respectively. We obtain the
partial derivatives of the fixed-point expressions(θy = EM0(θ

y))
with respect to model parametersθy and develop the Jacobian ma-
trix J (see Eq. (3)), from which we obtain the direction and next
set of parameter updates. Starting with (λ = 0, θy = θ0), the ho-
motopy function tracks the EM solution as it reachesλ = 1, cor-
responding to the purely supervised HMT model. A basic idea of
the homotopy method for HMT parameter optimization is presented
here without deliberating on details regarding partial derivatives of
the fixed-point EM updates, which we present subsequently for the
semi-supervised HMT modeling.

4.2. Semi-supervised HMT modeling

The iterative EM approach to semi-supervised learning of HMT (as
shown in Eq. (1), withλ fixed atU/(L + U)) is often unreliable
[4],[8]. As an alternative, we apply the homotopy method to obtain
an optimal balanceλ, along with the corresponding HMT model-
parameters representing the textures. The fixed-point equations of a
semi-supervised HMT (for any arbitraryλ), listed in Eq. (1), may be
written in a concise form as

H(Θ̃, λ) = (1−λ)(Θ̃−EM0(Θ̃))+λ(Θ̃−EM1(Θ̃)) = 0, (5)

whereΘ̃ = {wy , θ̃
y
}C

y=1 is an unnormalized version ofΘ (LHS
of Eq. (1)). The expressionsEM0(Θ̃) andEM1(Θ̃) represent the
RHS of Eq. (1) forλ = 0 and 1, respectively (purely supervised and
unsupervised EM updates). Note that the only difference between
the above expression and the generic homotopy form (see Eq. (2)) is
that the homotopy starts with a ‘trivial’ solution, whereasthe above
transformation function is itself a fixed-point EM (supervised EM)
for λ = 0. We approximate the above expression asEM0(Θ̃) ≈
EM0, whereEM0 is the supervised EM solution obtained using
only labeled texture blocks. One may use either traditionalEM or
the homotopy-based solution proposed in Sec. 4.1 to obtainEM0.
The homotopy path is obtained by solving the differential equation
(differentiating Eq. (5) to form the JacobianJ)

h
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i
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J
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–
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Hence the direction[dΘ̃ dλ]T can be obtained, under first-order
approximation, as the one-dimensional null-space of the Jacobian
matrix J . Note that evaluation of∇

Θ̃
EM1(Θ̃) involves partial

derivatives ofγ, ξ and p(y|x) with respect to model parameters
{wy , π̃y, ǫ̃y ,µy ,σy}. Analytical derivations of these derivatives are
elaborate; we only present the final expressions here for brevity:
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whereφt,t′,m,k = p(st = m|st′ = k,xj) and Φt,t′,m,n,k =
p(st = m, sparent(t) = n|st′ = k,xj). Note that the above set



of expressions is specific to a particular subband (HH ,HL, orLH)
of a particular texture classy, but these symbols are suppressed to
avoid cluttering notation. One can derive analytical expressions for
φ andΦ in terms of training data and HMT parameters, but these are
not shown here due to space constraints. The termsγ andξ can be
evaluated directly using the upward-downward step of the HMT-EM
algorithm [6]. Similarly one can show that

∂ξj

t,k,l

∂πm

=
ξj

t,k,l

πm

h

φ1,p(t),m,l − γj
1,m

i

∂ξj

t,k,l

∂ǫt′,m,n

=
ξj

t,k,l

ǫt′,m,n

h

pt′,j

t,m,n,k,l − ξj

t′,m,n

i

∂ξj

t,k,l

∂µt′m

= ξj

t,k,l

h

pt′,j

t,m,k,l − γj

t′,m

i (xt′j − µt′m)

σt′m

∂ξj
t,k,l

∂σt′m

= ξj

t,k,l

h

pt′,j

t,m,k,l − γj

t′,m

i (xt′j − µt′m)2 − σt′m

2(σt′m)2
,

wherept′,j

t,m,n,k,l = p(st′ = m, sp(t′) = n|st = k, sp(t) = l,xj)

andpt′,j

t,m,k,l = p(st′ = m|st = k, sp(t) = l,xj). The compu-

tations ofpt′,j

t,m,n,k,l andpt′,j

t,m,k,l are straightforward but not shown
here due to length constraints. Note that computation of theJaco-
bian matrixJ (see Eq. (6)) requires partial derivatives with respect
to unnormalized parameters̃Θ, which are related to their normalized
counterpart as
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and the derivatives of an arbitrary functionf with respect to unnor-
malized parameters may be written as
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Now the only partial derivative remains to be specified isp(y|xj)

with respect toΘ̃, which can be shown as
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Given the partial derivative ofEM1(Θ̃) with respect to unnormal-
ized parameters̃Θ, we obtain the JacobianJ , from which we obtain

the directional vector[ ˙̃
Θ λ̇]T and update the model parametersΘ̃

and balance parameterλ. Starting with ˙̃
Θ = 0 and λ̇ = 1, we it-

erate the above procedure until we reach the first local optima in the
path ofλ. The correspondingΘ (normalized fromΘ̃) are treated
subsequently astrainedsemi-supervised HMT parameters.

5. RESULTS

We present here a quantitative performance analysis of the proposed
homotopy method for parameter estimation of both supervised and
semi-supervised HMT models in the context of texture classification.
Three different textures,e.g., ‘sand’, ‘grass’ and ‘wool’ from pub-
licly available “Brodatz” textural images [10] are chosen for subse-
quent analyses. Each texture of size512×512 pixels is subjected to a
two-level wavelet decomposition with Haar wavelets yielding 16384
wavelet quadtrees. Each two-level quadtree consisting of aroot node
and four children nodes (henceR = 5) corresponds to a4 × 4 tex-
tural image block. For supervised HMT modeling, we randomly
chooseL samples from each texture and train the HMT model using
both the EM and homotopy method. Note that the same random pa-
rameter initialization is used for both methods, and we observe that
both algorithms converge to the same estimated HMT parameters.
Figure 1 shows the convergence of expected log-likelihood for both
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models as a function of iteration number (the explicit HMT parame-
ters are also very close) for the ‘sand’ image withL = 30. For both
algorithms, convergence is guaranteed (albeit to a local optimum),
although the homotopy method is approximately20% slower than
its EM counterpart for the chosen example (although both algorithms
are very fast). In addition, the rate of convergence for the homotopy
method depends on the step size used for piecewise-linear approxi-
mation of the homotopy path, to be chosen specific to the nonlinear
system of equations at hand. In our Gaussian mixture model-based
HMT algorithm, we typically observe smooth convergence using a
step size of 0.01 along the direction ofλ. This comparison to con-
ventional EM-based HMT training can also be viewed as a verifica-
tion of accuracy for the homotopy method, and we therefore proceed
to our true objective,i.e., semi-supervised learning of HMTs.

We present the semi-supervised HMT performance analysis with
C = 2 classes, although the method is applicable to an arbitrary
number of texture classes (the computational cost increases expo-
nentially with the number of training classes used). We randomly
chooseL labeled wavelet quadtrees (with known underlying tex-
ture) from two textures andU unlabeled ones (each unlabeled texture
block or wavelet quadtree is chosen randomly from one of the two
textures). We first obtain the HMT parameters trained only onthe
labeled samples and treat them as a starting point (EM0 at λ = 0)
for our semi-supervised HMT modeling via homotopy. In Fig. 2
we plot the evolution ofλ starting at 0 and observe a sharp dis-
continuity aroundλ = 0.7 while training with ‘sand’ and ‘’grass’
image withL = 20 (10 from each texture) andU = 400. Accord-
ing to [4], this kink represents a good operating point forλ within
the semi-supervised classifier. In Fig. 2 we also plot the probabil-
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ity of classification error on the unlabeled data, as a function of the
same evolution index (iteration number). It is important toempha-
size that one would not have access to this curve in practice,since
classifier scoring obviously requires access to the labels.However,
it is interesting to note that the probability of error for the semi-
supervised HMM is indeed minimized about the point for whichthe
kink in λ is manifested. In Fig. 3(a) and 3(b) we summarize the
performance of semi-supervised algorithms using both the EM and
homotopy method using two sets of texture pairs, ‘sand’ vs. ‘grass’
and ‘sand’ vs. ‘wood’, respectively. The traditional EM algorithm
uses a fixed balance(λ = U/(L + U)), whereas we estimate the
optimalλ in the homotopy method that corresponds to the first sharp
kink encountered in the homotopy path ofλ. In both figures the per-
centage classification (averaged over 10 different runs) ona set of
U = 400 unlabeled data is presented as a function of the number
of labeled training samples (L, with L/2 samples from each tex-
ture). Note that we perform the classification task only on the U
unlabeled image blocks. The variation in classification performance
over ten different runs with fixed number of labeled and unlabeled
data are shown using errorbars in both Figs. 3(a) and 3(b). Figure
3(c) shows the variation ofλ, obtained via the homotopy method
and averaged over different runs, along with its variation presented
in errorbars. We observe superior classification performance using
homotopy-based semi-supervised HMT modeling in comparison to
its EM counterpart, while both of the semi-supervised algorithms are
significantly superior to the supervised algorithm.

6. CONCLUSIONS

We apply the homotopy method to HMT model-parameter estima-
tion in the context of wavelet-based texture analysis and classifica-
tion, utilizing both labeled and unlabeled image blocks. The algo-
rithm is focused on determining the proper balance between these
two data sets, accounting for the fact that unlabeled data are typi-
cally far more plentiful than labeled data. The homotopy method
starts from a purely supervised solution and then tracks in the pa-
rameter space until a phase transition is manifested. We observe in
our experiments that the initial such transition is indicative of a good
balance between the labeled and unlabeled data. We also usedthe
homotopy method as an alternative to the widely used EM algorithm
for supervised HMT modeling. Results are presented for realtextu-
ral images from a publicly available image database [10].

The major contributions of this paper are: 1) development of
the homotopy method for purely supervised training of the HMT
model as an alternative to the EM algorithm, and 2) development
of a semi-supervised HMT model, with automatic estimation of the
proper balance between labeled and unlabeled data. There are sev-

eral areas of interest for future research. Computation cost of the
homotopy based semi-supervised training is much higher than its
EM counterpart, albeit significant performance gain. In addition, no
incremental learning procedure is available for new unlabeled data.
Using 20 labeled and 400 unlabeled data, the supervised-EM,semi-
supervised EM, and the homotopy method take approximately 10
seconds, 2 minutes and 100 minutes of CPU time, respectivelyusing
Matlab on a 2.8 GHz Pentium machine. The complexity of homo-
topy isO(n3) (n being the the size of training data), which is too
slow for many applications.
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