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ABSTRACT

A semi-supervised hidden Markov tree (HMT) model is devetbp
for texture analysis, incorporating both labeled and uelked data
for training; the optimal balance between labeled and witabdata
is estimated via the homotopy method. In traditional EMeohs
semi-supervised modeling, this balance is dictated by ¢hetive

size of labeled and unlabeled data, often leading to podioper

2. WAVELET-BASED HMT MODEL AND EM-BASED
PARAMETER ESTIMATION

Consider animage.,, sampled uniformly in two dimensions. Defin-
ing LL®, = I.4, a sequential-level wavelet decomposition di.,
yields four subsampled images:L;,;, HL,,;, LH_;, and HH,.
Each pointind LY, LH?,;, andH H,; corresponds to the root node

mance. Semi-supervised modeling may be viewed as a source &if a wavelet tree [6], and each node within a tree has foudl

location problem between labeled and unlabeled data, atedrby
a parameteh € [0, 1], whereh = 0 and1 correspond to the purely

supervised HMT model and purely unsupervised HMT-basesH clu

tering, respectively. We consider the homotopy methodaoktra

path of fixed points starting from = 0, with the optimal source
allocation identified as a critical transition point whehe solution

is unsupported by the initial labeled data. Experimentaliits on

real textures demonstrate the superiority of this methoadpared to
the EM-based semi-supervised HMT training.

1. INTRODUCTION

Semi-supervised learning exploits both labeled and ufédhiata to
estimate parameters of an underlying model, yielding a&tolap-
tivity to new unlabeled data. Labeled data are generallyeesye
to acquire and are often sparse, while unlabeled data atvedy
inexpensive to acquire and therefore are often abundaesuRting
the existence of an underlying structure in the data, uféab&am-
ples may provide information about the data manifold, aey thay
be used to regularize a purely supervised solution. A cditeal
approach for parameter optimization with a generative hfelg,
HMTSs), incorporating both labeled and unlabeled data, issethe
expectation-maximization (EM) algorithm [1], in which ttaels of
the unlabeled data are treated as hidden variables, angtingatity
criterion is the likelihood maximization of both labeleddannla-
beled data [2]-[3]. However, the EM approach for semi-suised
learning is unstable, and Nigaet al. [3] proposed a heuristic way
to alleviate the instability by weighting the contributifsrom the un-
labeled data, while the choice of suitable scaling paranteteains
an important issue. Corduneastial. [4] proposed the homotopy
method for stable estimation of a naive Bayes classifier revtiee

optimal scaling parametex is selected at the point at which a crit-

ical transition occurs in the homotopy. We propose the homot
method, a generalization of continuation [5], as an altiéraedo the

at the next finer level (hence termed quadtrees). Each eqeadar-
responds to 2" x 2" block in the original imagd.q [7], and our
objective is to obtain a parametric model that captures tidetying
statistics within the wavelet quadtrees.

The HMT is a statistical model that assumes a Markovian rela-
tionship between any wavelet node with its parent within adiree
[6]. For simplicity the HH, HL and LH quadtrees are treated as
statistically independent, and each node in a quadtree deled by
a hiddenM-state process, with each state represented by a Gaus-
sian distribution parameterized by its mean and varianceusget
al. [6] developed an EM algorithm obtainingnaost likelyestimate
of the model paramete®’ = {77, ¢}, ;, 1\, 01, } fOT texturey
with m, k,1 € {1,---,M}, andt,t' € {1,---, R} representing
indices of the wavelet nodes numbered sequentially fronndbeto
the leaves. The term?, denotes the probability of hidden state
associated with the root node, a,rfq’“ ' defines the transition prob-
ability to hidden state; (= k) from its parent£ [). The terms.?,,
ando?  denote the mean and variance of the Gaussian distribution
representing then'” state of thet'" wavelet node. We have three
such independent models for each texture, one for each sdpbat
we suppress band-specific notation here for simplicity.

Assume we havé labeled texture block§(x1,y1), -+, (zr,yr)}
and U unlabeled texture block$x 1, - ,xr+v}, where each
x; corresponds to three quadtrees one for each subband. For bot
labeled and unlabeled texture blocks the associated vianasdfi-
cients are observable, whereas the underlying Markovsssaitehid-
den. In the context of classification amoagtextures, we employ
distinct HMT models, one for each texture, and we wish towessts
the joint set of model paramete® = {w", 8 }$_, based on the set
of labeled and unlabeled data, wharérepresents the probability of
class membership. Assuming thatepresents the balance between
labeled and unlabeled data, the semi-supervised EM upBites
©® can be written as

EM-based solution for both supervised and semi-supentbdds v (1=XN1 L4U

in the context of texture classification, along with estiimgthe op- w' =0l T Z] 1P (ylz;)

timal balance\ specific to semi-supervised modeling. We present L L+U

an overview of the HMT model and associated EM update equstio Ay Y0y + Z Y plylz;) (1)
in Sec. 2. The homotopy method is presented in Sec. 3, fotldwe i=1 ] T+1

its application to HMT parameter estimation in Sec. 4. Qitatite L L+U

performance analyses of the proposed approach and canrddusie —

presented in Sec. 5 and 6, respectively. Ena = baduw U Z Lkapyles)

i=1 j=L+1



Where%’f;n = p(s1 = ml|xs,y), g;’;;l = p(st = K, Sparent(t) = wheref, represents initialized HMT parameters. Note thased in
l|z;,y). The update for the Gaussian parameters (méaand vari-  EQ. (1) and (4) have different meanings since they are usesgfoi-
ancea) [8] are not shown here for brevity. The above equationssupervised and supervised EM updates respectively. Wenabia
only present the M-step of the EM algorithm [1] for a partaul partial derivatives of the fixed-point expressidi®¥ = £ Mo (6Y))
iteration, whereas the E-step involves evaluating andp(y|z)  with respect to model paramete#?% and develop the Jacobian ma-
in terms of model paramete®, estimated at the previous itera- trix J (see Eq. (3)), from which we obtain the direction and next
tion. Note that ~’ in the LHS of the first two expressions denote set of parameter updates. Starting with=£ 0,6Y = 8,), the ho-
unnormalized model parameters which are subsequentlyalimed ~ motopy function tracks the EM solution as it reaches= 1, cor-
during the E-step [6]. Iterative refinement of the modelapaeters ~ responding to the purely supervised HMT model. A basic idea o
based on the E and M step yields a guaranteed convergeneit (albthe homotopy method for HMT parameter optimization is pnése

a local optima) on paramete®. Note that the above expressions here without deliberating on details regarding partiaiwdtives of
assume) to be knowna priori, generally set td//(L + U) for  the fixed-point EM updates, which we present subsequentlhéo
semi-supervised EM modeling [8]. As an alternative, we pegpthe ~ semi-supervised HMT modeling.

homotopy method for optimizing the HMT parameters, alonthwi

obtaining an optimal balanck between the labeled and unlabeled 4.2, Semi-supervised HM T modeling

data.
The iterative EM approach to semi-supervised learning ofTHss

shown in Eq. (1), with\ fixed atU/(L + U)) is often unreliable
[4],[8]. As an alternative, we apply the homotopy method lxtam
an optimal balance,, along with the corresponding HMT model-
parameters representing the textures. The fixed-pointieqgaof a
semi-supervised HMT (for any arbitrady, listed in Eq. (1), may be
written in a concise form as

3. HOMOTOPY METHOD

The theory of the globally-convergent homotopy method lve®
finding zeros or fixed points of nonlinear system of equat[6h§9].
Rather than solving an original difficult probleR(®) = 0 directly,
we start from an ‘easy’ proble@(®) = 0 having a known solution
(or roots). We then track the solution while gradually tfansing H(C:), A) = (1—)\)((:)—EMO((:)))+>\((:)—EM1((:))) =0, (5)
the ‘easy’ problem into the original one. A simple choice loé t B B

transformation function is where® = {wy,ey}§:1 is an unnormalized version @& (LHS

of Eq. (1)). The expressionsM,(®) and EM;(©) represent the
H(©,A) = (1-A)(®© —a) + AF(0©) =0, @ RHs of Eqg. (1) forx = 0and 1, re(spt)actively (pu(reli/ supervised and
wherea € R" andF : R" — R" is the original system of equa- unsupervised EM updates). Note that the only differencevden
tions we want to solve, withh € [0, 1] being a scalar parameter. the above expression and the generic homotopy form (see2jds (
Starting from a ‘trivial’ solution ® = a,\ = 0), we gradually  that the homotopy starts with a ‘trivial’ solution, wherethe above
track the solution offf (®, ), with a final objective of obtaining transformation function is itself a fixed-point EM (supestil EM)
(® = ®*, X\ = 1) (F(©*) = 0). The solution ofH (®,)\) = 0is  for A = 0. We approximate the above expressionfally(©) ~
a trajectory, found by solving the differential equation E My, where EM, is the supervised EM solution obtained using
. only labeled texture blocks. One may use either traditiédl or
iH(@ A) ﬁH(@ A)] { © } -0 H@ >‘H =1, (3) the homotopy-based solution proposed in Sec. 4.1 to ol#faify.
20 oA ’ A ’ R The homotopy path is obtained by solving the differentialaipn
(differentiating Eq. (5) to form the Jacobial)

J

with initial conditions\ = 0 and® = a. The tangent vector = = e | _

[© A]” lies in the one-dimensional null space.bfJ is always full [I ~ AV EM(®)  EMo — EM1(®)} { dX ] =0 ©

rank along the path [9]), and the direction is chosen to raairan ¢

acute angle with the previous tangent vector (initial tanhgirection ~

is chosen to b® = 0 andA = 1). Hence the directiodd® d\]” can be obtained, under first-order
approximation, as the one-dimensional null-space of tlehlan

4. HOMOTOPY METHOD EOR HMT MODEL ING matrix J. Note that evaluation oV g EM;(®) involves partial

derivatives ofy, ¢ and p(y|x) with respect to model parameters

4.1. Supervised HMT modeling {w", 7Y, €, u¥, o¥}. Analytical derivations of these derivatives are

elaborate; we only present the final expressions here foitjre
The homotopy method may be employed as an alternative tad\he E _ _
based parameter estimation for most generative modelspumedy 3%7,k %7,k

— J J
supervised environment, a generative model is trainedusixely Omm T [(blvf»mvk a %’m}
on data from one particular class (a particular texture inpyab- dy) i ) _
lem). This is a special case of the semi-supervised sceshown L = L [@Z, o — & n]
in Eq. (1) withA = 0. In addition, w? is irrelevant here since  9€'.m.n €/ mm b o
data from only a single class is present. Purely supervised-fi ary{’k y y p
point EM expressions of Eq. (1) may be written in a concisenfor ET = ik [%,t,m,k - ’Yt',m] (Terj = ferm) /Ot m
asf¥ = EM,(0Y) (for texture classy’), where@? and EM,(6Y) jm )
represent the LHS and RHS of Eq. (1) foe= 0. Analogous to Eq. O i g |:¢j g ] (Terj = trm)” — Otrm
(2), the supervised HMT expressions may be written in teriisen Ooprm Vet [P tsmok ™ Term 2(0pm)? ’
transformation functiorf as Where dy v = plsi = mlsy = k,a;) and Bpo s =

H(0Y,A\) =(1—-X)(0Y—60) +A0Y—EMo(6Y)) =0 (4)  p(st = m,Sparentty = n|s¢ = k,x;). Note that the above set



of expressions is specific to a particular subbald#,H L, or LH)

5. RESULTS

of a particular texture clagg, but these symbols are suppressed to

avoid cluttering notation. One can derive analytical expiens for

We present here a quantitative performance analysis ofrtipoped

¢ and® in terms of training data and HMT parameters, but these ar@omotopy method for parameter estimation of both supeivisel

not shown here due to space constraints. The terasd< can be
evaluated directly using the upward-downward step of theTHR
algorithm [6]. Similarly one can show that

J J
0wt Ciwy [¢ i ]
- = 1,p(t),m,l —
87Tm T p(t),m 1,m
J J
8§t,k,l o gt,k,l [pt’ j j ]
8€t/,m,n €t/ mon t,m,n,k,l — St/ m,n
J
8‘£t,k,l _ é.j [pt',j ,Yj } (l’t’j — Uerm)
- tk,l | Pt,mk, 0 Te,
8Mt’m m Ot'm
J 2
8£t,k,l _ j [pt,’j 7]' } (xt’j — Nt’m) — O¢'m
- tk,0 |Ft,m k0 T T 2 ’
8Ut’nL m Q(Ut’m)
wherept’ ks = P(sr = m, spry = sy = K, spy = 1, x5)

andpt okl = p(sy = m|st = k,spty = l,x;). The compu-

tations Ofpt’ ok, @Nd pt 1,1 are straightforward but not shown
here due to length constraints. Note that computation ofltue-

bian matrixJ (see Eq. (6)) requires partial derivatives with respect £ N

to unnormalized paramete®, which are related to their normalized
counterpart as

v
7Y, (m,n)

T = ==y ande; ,y(m,n) = %,

D1 Tn Ek 1 fp(z)(kvn)

and the derivatives of an arbitrary functignwith respect to unnor-
malized parameters may be written as

of

sz(@f - Sl ) /i Ve (el

Now the only partial derivative remains to be specifiegh(g|z”)
with respect td®, which can be shown as

Ip(ylz;)

owv’ = (y’|;1)]-) [6?”;/ — p(y|w].)] /wy _ W/’Ll)y
oplylz;)  _ i /

ory w [W T Wm] /7 gy e {1, ,C}
Op(ye,)
8et mn W [gt mn p(t) net m n] /& mon (7)
op(ule,)
m =W (mM th) i m/Ut,m and
M = W[(.Tt]' — u;{:ﬂ) Utm]’}/]’y /Q(Utm)

oo,

Given the partial derivative af? M, (©) with respect to unnormal-
ized parameter®, we obtain the Jacobiah, from which we obtain

the directional vectofé AT and update the model paramet@s

and balance parametar Starting with® = 0 and = 1, we it-

erate the above procedure until we reach the first local @piinthe
path of . The correspondin@® (normalized from®) are treated
subsequently asained semi-supervised HMT parameters.

semi-supervised HMT models in the context of texture cfecsgion.
Three different textures.g, ‘sand’, ‘grass’ and ‘wool’ from pub-
licly available “Brodatz” textural images [10] are chosem $ubse-
guent analyses. Each texture of sid@ x 512 pixels is subjected to a
two-level wavelet decomposition with Haar wavelets yietfl 6384
wavelet quadtrees. Each two-level quadtree consistingaftanode
and four children nodes (hende = 5) corresponds to 4 x 4 tex-
tural image block. For supervised HMT modeling, we randomly
chooseL samples from each texture and train the HMT model using
both the EM and homotopy method. Note that the same random pa-
rameter initialization is used for both methods, and we plesthat
both algorithms converge to the same estimated HMT paramete
Figure 1 shows the convergence of expected log-likelihaoddth
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Fig. 1. Comparison of the fixed-ig. 2. Evolution of classifica-
point found by EM and homaion error and\ as a function of
topy method. iteration index.

models as a function of iteration number (the explicit HMTgrae-
ters are also very close) for the ‘sand’ image with= 30. For both
algorithms, convergence is guaranteed (albeit to a locinom),
although the homotopy method is approximatglys slower than
its EM counterpart for the chosen example (although botbréigms
are very fast). In addition, the rate of convergence for thradtopy
method depends on the step size used for piecewise-linpamap
mation of the homotopy path, to be chosen specific to the neati
system of equations at hand. In our Gaussian mixture maa
HMT algorithm, we typically observe smooth convergencengsi
step size of 0.01 along the direction »f This comparison to con-
ventional EM-based HMT training can also be viewed as a eerifi
tion of accuracy for the homotopy method, and we therefooeqed
to our true objectivel.e., semi-supervised learning of HMTs.

We present the semi-supervised HMT performance analysis wi
C = 2 classes, although the method is applicable to an arbitrary
number of texture classes (the computational cost incseasgo-
nentially with the number of training classes used). We oanig
chooseL labeled wavelet quadtrees (with known underlying tex-
ture) from two textures and unlabeled ones (each unlabeled texture
block or wavelet quadtree is chosen randomly from one ofe t
textures). We first obtain the HMT parameters trained onlythen
labeled samples and treat them as a starting p@idt/¢ at A\ = 0)
for our semi-supervised HMT modeling via homotopy. In Fig. 2
we plot the evolution of\ starting at 0 and observe a sharp dis-
continuity around\ = 0.7 while training with ‘sand’ and “grass’
image withL = 20 (10 from each texture) and = 400. Accord-
ing to [4], this kink represents a good operating point Xowithin
the semi-supervised classifier. In Fig. 2 we also plot théaind-
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Fig. 3. Texture classification performance using homotopy, siped-EM and semi-supervised EM method for a texture padr famction
of number of labeled datd ], with fixed number {/' = 400) of unlabeled data.(a) performance for ‘sand’ vs ‘grasstutee, (b) performance
for ‘sand’ vs ‘wood’, (c) Variation of optimal balance\f averaged over 10 runs as a function of number of labeledfdatsand’ vs. ‘grass’.

ity of classification error on the unlabeled data, as a fanctif the  eral areas of interest for future research. Computatioh abthe
same evolution index (iteration number). It is importanetopha- homotopy based semi-supervised training is much higher itsa
size that one would not have access to this curve in practinee  EM counterpart, albeit significant performance gain. Initald, no
classifier scoring obviously requires access to the labdtsvever, incremental learning procedure is available for new urkbédata.

it is interesting to note that the probability of error foretkemi-  Using 20 labeled and 400 unlabeled data, the supervisedsEMi-
supervised HMM is indeed minimized about the point for wiith  supervised EM, and the homotopy method take approximately 1
kink in X\ is manifested. In Fig. 3(a) and 3(b) we summarize theseconds, 2 minutes and 100 minutes of CPU time, respectigaig
performance of semi-supervised algorithms using both tleaBd Matlab on a 2.8 GHz Pentium machine. The complexity of homo-
homotopy method using two sets of texture pairs, ‘sand’ ggass’  topy is O(n®) (n being the the size of training data), which is too
and ‘sand’ vs. ‘wood’, respectively. The traditional EM atghm  slow for many applications.

uses a fixed balance\ = U/(L + U)), whereas we estimate the
optimal X in the homotopy method that corresponds to the first sharp
kink encountered in the homotopy pathXofin both figures the per-
centage classification (averaged over 10 different runs) eat of

U = 400 unlabeled data is presented as a function of the number
of labeled training sampled.( with L/2 samples from each tex-
ture). Note that we perform the classification task only amth
unlabeled image blocks. _The_ variation in classificatioriqrerance Rep., Institute for Adaptive and Neural Computation, Unive
over ten different runs with fixed number of labeled and ueled itv of Edinburah. Edinburah. UK. 2000

data are shown using errorbars in both Figs. 3(a) and 3(lgur€i sity of Edinburgh, urgh, U, '

3(c) shows the variation of, obtained via the homotopy method [3] K.Nigam, A. Mccallum, S. Thrun, and T. Mitchell, “Textas-
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