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ABSTRACT 
 
We consider target classification and detection based on back-
scattered observations measured from a sequence of target-
sensor orientations. The multi-aspect scattered waves from a 
given target are modeled with a hidden Markov model (HMM). 
The targets are assumed concealed and the absolute target-sensor 
orientation is assumed unknown; therefore, it is only possible to 
control the angular displacements (change in orientation) 
between consecutive measurements. The performance of the 
HMM classifiers/detectors is influenced by the choice of the 
angular displacements, the optimization of which motivates 
adaptive search strategies developed in this paper, based on 
entropy-driven optimality criteria. The search proceeds in a 
sequential fashion. Based on the previous observations and their 
associated angular displacements, one determines the optimal 
next displacement to perform an associated observation. The 
search strategies are detailed and example results presented on 
adaptive classification and detection of underwater targets. 

 

1. INTRODUCTION 
 
There are many sensing scenarios for which the target is 
stationary and the sensor position may be moved sequentially, to 
observe the unknown and concealed target from a sequence of 
target-sensor orientations (also called aspect angles throughout 
the paper). For example, an unmanned underwater or airborne 
vehicle (UUV or UAV) may observe a target from a sequence of 
aspect angles. Such multi-aspect sensing is widely observed in 
nature, for example in bats [1]. The motivation behind multi-
aspect sensing is that the scattered waves produced by a real-
world target are usually a strong function of the target-sensor 
orientation (aspect). While this aspect-dependence complicates 
the classification/detection task, it may also be utilized to 
enhance the performance of the classifier/detector. For example, 
consider two targets A and B producing a set of scattered waves 
EA and EB, respectively, over the 4π range of aspect angles (i.e., 
including the angles of azimuth and elevation). If A and B have 
many features in common, the intersection EA∩EB may be large 
and any classifier attempting to differentiate A and B by using 
the scattered wave at a single aspect angle will produce high 
error rates. However, if multiple scattered waveforms are 
observed at a proper sequence of aspect angles, the error rate 
may be reduced as the ambiguity is resolved by the sequential 
information - A and B are less likely to generate the same 
sequence of observations.  

         Multi-aspect scattering from a target can often be modeled 
well with a hidden Markov model (HMM) [7]. Specifically, the 
target-sensor orientations, denoted by θ, are divided into a set of 
states. Each state is defined by a contiguous subset of θ for 
which the associated scattered waves are approximately 
stationary. When performing scattering measurements at a 
sequence of θ, one is implicitly sampling scattered waves from a 
sequence of target states. The sequence of sampled states is often 
modeled well as a Markov process [2,3,4]. In practice the 
underlying sampled states are unobserved, or “hidden”, and only 
the associated scattered waves are observed. This therefore 
yields a hidden Markov model.  
         For the task of classification, each target is characterized 
by a distinct HMM. After performing a sequence of observations 
OL={O1,…,OL} at L target-sensor orientations, one computes the 
likelihoods P(OL|Tk), k=1,…,K, and applies the maximum 
likelihood (ML) criterion to make a decision, i.e., assigns OL to 
Ti if P(OL|Ti)>P(OL|Tk), ∀Tk ≠ Ti. For detection, one must 
distinguish between targets T and clutter C. Due to the diversity 
of C, usually no HMM is assumed for C and one has a single 
HMM built for T. An observation sequence OL is declared as 
having been generated by T if P(OL|T)>threshold, and it is 
otherwise deemed generated by C.  
         In general, the performances of the classifiers or detectors 
are dependent on the choice of observation sequences. For 
example, if targets A and B are similar around θ=θ*, then a 
sequence OL observed in the vicinity of θ* can rarely be 
distinguished as coming from A or B. One should change the 
aspect angle and use those observations in regions of θ where A 
and B exhibit significant disparities.  
         This paper addresses the problem of optimizing a sequence 
of aspect angles θθθθL={θ1,…,θL} such that the corresponding 
sequence of observations OL={O1,…,OL} measured at θθθθL are 
optimal in the sense that the identity of OL is most easily 
determined. The targets are assumed concealed, therefore the 
absolute values of θθθθL are not known and one can only control the 
angular displacements between consecutive observations, i.e., 
∆θθθθL={∆θ2,…,∆θL} with ∆θi=θi−θi−1 if one considers only 
azimuthal angles. Joint optimization of all elements in ∆θθθθL is 
usually difficult as the search space grows exponentially with L. 
Alternatively, we take a sequential approach here. We assume to 
have observed the sequence OL, associated with angular 
displacements ∆θθθθL, and ask what should be the next angular 
displacement ∆θL+1 to move the sensor and measure observation 
OL+1 such that the identity of OL+1 is most readily determined.  
         This work can be considered an extension of the research 
in [5,6] to the case for which the statistical-independence 
assumption on the observations at different aspect angles is 
replaced by a hidden Markov assumption. The independence 



assumption is usually favored for its ability to achieve a simple 
and usable form of the adaptive-search objective function. We 
demonstrate here that the hidden Markov assumption yields an 
objective function that may also be evaluated easily, constituting 
a search process that accounts for statistical dependence between 
the sequence of observations.  
 
2. GEOMETRIC HMM WITH AN ANGLE-DEPENDENT 

STATE-TRANSITION MATRIX 
 
The geometric HMM was developed in [2,3] to model multi-
aspect acoustic scattering from an underwater elastic target, and 
it has been extended to radar scattering [4]. A geometric HMM 
utilizes the fact that a state corresponds to a contiguous range of 
aspect angles θ, allowing one to establish the HMM parameters 
based on geometrical considerations. Assume that the i-th state 
of target Tk , denoted by )(k

iS , resides in the angular region 
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assuming M(k) states for Tk. In (1) we assume the scattered waves 
are only a function of azimuth over 2π. This can be extended to 
the case where dependence on both azimuth and elevation angles 
is considered.  
         For each state )(k

mS , m=1,…,M(k), of target Tk, we define the 

probability of making an observation O. Let ),|( )(
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m TSOP  be 

the probability of observing O in )(k
mS  of Tk. There are numerous 

ways to define ),|( )(
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m TSOP , for example in terms of Gaussian 

mixtures [7]. For simplicity we here employ vector quantization, 
with which O is mapped to a code in a pre-defined codebook. If 
the codebook is composed of N codes C={c1,…,cN}, each 
observed O is mapped to one member of C, and the state-
dependent observation probabilities are quantized in terms of 
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        What remains is defining the Markovian probability of Tk 
transitioning from state )(k

iS  to state )(k
jS . In previous studies 

[2,3,4] the angular displacement ∆θ between consecutive 
observations was assumed fixed, and the state-transition matrix 
was constant. We now extend this concept to the case in which 
∆θ varies from one observation to the next, to allow adaptive 
sensing. In particular, the state-transition matrix for target Tk, 
denoted A(k), is a function of ∆θ. The (i,j)-th element of A(k)(∆θ), 
which denotes the probability of Tk transiting from state )(k

iS  to 
)(k

jS , given the angular displacement ∆θ, is defined as  
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where mod represent modulus, )(
,
k
jid  is the angular distance 

traveling clockwise from the center of )(k
iS  to the center of )(k

jS , 

the sign of ∆θ is defined as positive for clockwise angular 
displacement and negative for counterclockwise angular 

displacement, and )()( θk
jw  is a bell-shaped function integrating 
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       Assuming equally probable occurrence of the K targets in 
consideration, the posterior probability of target Tk after the 
sequence OL={O1,…,OL} is observed is found to be  
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where ∆θθθθL={∆θ2,…, ∆θL} are the angular displacements 
associated with OL with ∆θi the displacement from Oi−1 to Oi, 
and P(Tk)=P(Tk|∆θθθθL) is used. Computation of P(OL|∆θθθθL,Tk) can 
be effected as [7] 
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is the forward variable and qL the state variable for observation 
OL. The forward variable can be computed efficiently in a 
recursive fashion as [7] 
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3. ADAPTIVE SEARCH OF OPTIMAL SENSOR 

ANGULAR DISPLACEMENTS 
 
3.1. Adaptive Search in the Case of Classification 
 
Assume that the K possible targets under consideration occur 
with equal probability. After a sequence of observations OL+1 is 
made with associated angular displacements ∆θθθθL+1, one has the 
posterior probabilities P(Tk|OL+1,∆θθθθL+1), k=1,…,K. Consider 
P(Tk|OL+1,∆θθθθL+1) as a distribution in k, from which one can use 
the maximum posterior probability (MAP) criterion to determine 
the identity of the interrogated target. To minimize uncertainty, 
one minimizes the entropy of P(Tk|OL+1,∆θθθθL+1) in k, i.e., 
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is minimized [8]. One then searches for the ∆θθθθL+1 that minimizes 
(8). Joint search of the L unknowns in ∆θθθθL+1 is difficult, as the 
search space grows exponentially with L. Alternatively, one can 
use a sequential search strategy, which searches the next angular 
displacement ∆θL+1 based on the previously determined 
displacements ∆θθθθL={∆θ2,…,∆θL}. Clearly, the choice of ∆θL+1 
must be made before OL+1 is actually observed. One can remove 
the dependence of (8) on OL+1 in the search of ∆θL+1, by taking 
conditional expectation of (8) with respect to OL+1 given OL, ∆θθθθL, 
and ∆θL+1=∆θ, and minimizing the expected entropy. In the case 
of quantized observations, the expected entropy is 
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which can be efficiently evaluated in a recursive manner using 
(4)-(7). The detailed derivation of (9) is omitted here for brevity. 
The optimal angular displacement ∆θL+1 maximizes the 
reduction in the expected entropy  
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Note the first term in the objective function of (10) is 
independent of ∆θ and OL+1 and can be treated as a constant in 
the maximization. The operations in (9) and (10) are performed 
sequentially, to determine the angular positions of all 
observations except the first. 
 
3.2. Adaptive Search in the Case of Detection 
 
When performing detection one usually cannot assume a priori 
knowledge of the possible clutter, as their number is usually 
infinite, unlike the targets, which are of a finite number. 
Therefore for detection a single HMM is built representing the 
targets T and no HMM is built for the clutter set C.  
        Assume a sequence of observations OL has been made with 
associated angular displacements ∆θθθθL. The next angular 
displacement ∆θL+1 for observation OL+1 is determined by 
maximizing the expected logarithmic likelihood of OL+1 having 
been produced by T, i.e., 
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where the expectation is taken with respect to OL+1 conditional 
on OL, ∆θθθθL, ∆θL+1=∆θ, and T. By using logP(OL,OL+1|∆θθθθL,∆θ,T) 
= logP(OL+1|OL,∆θθθθL,∆θ,T) + logP(OL|∆θθθθL,∆θ,T) and the fact that 
OL is independent of OL+1, one finds (11) reduces to 
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where H is the entropy. This shows ∆θL+1 is equivalently a 
minimizer of the entropy, similar to the case in Sec. 3.1. For 
quantized observations (11) can be expressed as 
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The objective function in (13) can be recursively computed via 
(5)-(7). 
       The maximization in (11)-(13) is based on the assumption 
that the object being interrogated is T.  If this assumption is true, 
the resulting optimal angular displacements will produce a 
sequence that maximizes, on average, the HMM logarithmic 
likelihood, with the maximization performed in a “greedy” 
manner, one observation at a time. If the object is not T, then the 
selected sequence of angles will in general not maximize the 
associated likelihood, since in this case there is likely a 
mismatch between the HMM and the scattering characteristics of 
the object under interrogation. In this manner we implicitly 

distinguish between the targets and clutter, using no a priori 
knowledge of the latter. 
 

4. RESULTS 
 
We consider acoustic scattering data from five underwater 
elastic targets T1, T2, …, T5 [2,3]. For classification, we first 
build a distinct HMM for each of the five targets, assuming a 
uniform angular displacement of 5° between consecutive 
observations. During this training phase the target state 
decomposition is performed using the Baum-Welch algorithm 
[7]. Then the state-transition-probability matrix is augmented to 
handle non-uniform angular displacements, using (2)-(3) with 
the variances in (3) determined from the state decomposition. 
Specifically, if )(ˆ k

jθ represents the angular extent of state )(k
jS  of 

target Tk, then )(k
jσ in (3) is defined as 2/ˆ )(k

jθ . 
        It is assumed that a target has been detected, and that it is 
one of the K=5 known targets for which HMMs have been 
trained. We compare three methods. In Method 1 we adaptively 
determine the angular displacements ∆θθθθL for L=5 via the search 
strategies in Sec. 3. In Method 2 the angular displacements are 
constant and span the same angular extent (aperture) as the 
adaptive displacements for the same sequence length. In Method 
3 the displacements are constant and equal to 5°.  
        The confusion matrices of classifying the 5 targets using 
Methods 1, 2, and 3 are presented in Tables 1-3, respectively. 
These results are averaged across all possible initial angles for 
the length-five (L=5) sequences. The (i,k)-th element of the 
confusion matrix quantifies the probability that a sequence of Ti 
is declared as coming from Tk. Tables 1-3 demonstrate that 
Method 1, the adaptive search method, consistently outperforms 
the other two.  
         Fig. 1 shows an example of the objective function as 
defined in (10). In this example we consider target T1, and this 
figure shows a representative shape of the objective function for 
all examples considered. This figure demonstrates that different 
selections of ∆θL+1 do indeed lead to different decreases in the 
expected entropy, and it also indicates by the smoothness of this 
function that the maximization in (10) is implemented easily.  
          In the detection example we assume that an HMM is 
available for target T5 [3], this representing the “target of 
interest”. Target T5 is a cylindrical shell, while the six false 
targets are two rocks, a wood log, a 55-gallon drum, a plastic 
container and a small missile-like object (see [9] for details on 
the false targets, or clutter). These false targets were not 
considered when training the HMM for T5. The detection results 
in Fig. 2 are presented for a total of L=5 observations, 
considering all possible initial angles of observation for the 
targets and false targets. The results of Methods 1, 2, and 3 are 
presented in the form of the receiver operating characteristic 
(ROC) curve. It is seen that Method 1, the adaptive method, 
achieves significantly improved results over the other two 
methods, which both use sequences of uniform angular 
displacements. The uniformly-sampled results are shown for 5° 
and 22° increments, the latter representing the average sample 
rate for the adaptive algorithm. 
 



5. CONCLUSIONS 
 
Hidden Markov models have been used for multi-aspect target 
identification and detection, with the objective of optimizing the 
angular displacement between consecutive observations. The 
method considered here represents an extension of the work on 
optimal sequential experiments [5-6]. Specifically, through use 
of the HMM we have removed the assumption that the sequence 
of measurements are statistically independent. The ideas 
developed here are applicable to multi-aspect sensing, as well as 
other applications for which HMMs are applied sequentially to 
process data. The effectiveness of the presented methods has 
been demonstrated using measured acoustic-scattering data from 
five underwater elastic targets. The results showed that by using 
adaptive search procedure the performance of the HMM 
classifiers and detectors are significantly improved.  
         In the study presented here only the angular motion was 
considered for the sensor. In future research, additive noise may 
be considered and the sensor’s radial motion may also be 
optimized to enhance the signal to noise ratio. In addition other 
measures of entropy may be considered, such as Renyi entropy 
[8], rather than the Shannon entropy used here. 
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       Table 1. Confusion matrix of Method 1 

 T1 T2 T3 T4 T5 
T1 0.9750    0.0139 0.0028    0 0.0083
T2 0.0333    0.8806    0.0833    0  0.0028
T3 0.0083    0.1333    0.8444    0  0.0139
T4 0.0056 0  0  0.9639    0.0306
T5 0.0028    0.0028    0.0056    0.0083  0.9806

                                        

       Table 2. Confusion matrix of Method 2 
T1 T2 T3 T4 T5

T1 0.9417    0.0278    0.0222    0.0056    0.0028 
T2 0.0722   0.7917   0.1194    0    0.0167 
T3 0.0333    0.2333    0.7167    0     0.0167 
T4 0.0028    0     0  0.9556    0.0417 
T5 0.0056    0.0083    0.0111    0.0361    0.9389 

 
       Table 3. Confusion matrix of Method 3 

T1 T2 T3 T4 T5

T1 0.7667 0.0139 0.0333 0.0528 0.0133 
T2 0.0694 0.7278 0.1111 0 0.0917 
T3 0.0194 0.1861 0.7083 0.0111 0.0750 
T4 0.0417 0 0.0222 0.9083 0.0278 
T5 0.0389 0.0972 0.0500 0.0389 0.7750 
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Figure 1. An example of the objective function defined in 
equation (10). 
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Figure 2. Receiver operating characteristic (ROC) for 
distinguishing target T5 [3] from six false targets [9]. Results are 
shown for adaptive search of angular displacements as well as 
for uniform angular displacements of 5° and 22°. The latter 
represents the average angular sampling rate of the adaptive 
algorithm. 
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