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Abstract— Target detection and classification are considered
based on backscattered signals observed from a sequence of
target-sensor orientations, with the measurements performed
as a function of orientation (angle) at a fixed range. The
theory of optimal experiments is applied to adaptively optimize
the sequence of target-sensor orientations considered. This is
motivated by the fact that if fewer, better-chosen measurements
are used then targets can be recognized more accurately with less
time and expense. Specifically, based on the previous sequence
of observationsot = (o1, · · · , ot), the technique determines what
change in relative target-sensor orientation∆θt+1 is optimal for
performing measurement t + 1, to yield observation ot+1. The
target is assumed distant or hidden, and therefore theabsolute
target-sensor orientation is unknown. We detail the adaptive-
sensing algorithm, employing a hidden Markov model (HMM)
representation of the multi-aspect scattered fields, and example
classification and detection results are presented for underwater
targets using acoustic scattering data.

Index Terms— Classification, detection, HMM, entropy, opti-
mal experiments.

I. I NTRODUCTION

T Here are many sensing scenarios for which the target is
stationary and the sensor position may be moved sequen-

tially, allowing observation of the unknown and concealed tar-
get from a sequence of target-sensor orientations. For example,
an unmanned underwater or airborne vehicle (UUV or UAV)
may observe a target from a sequence of orientations. Such
multi-aspect sensing is also widely observed in nature, for
example in bats [1]. Multi-aspect sensing exploits the fact that
many targets generate scattered fields that are a strong function
of the target-sensor orientation. This strong aspect dependence
complicates the sensing task, but it may also enhance classifi-
cation and detection performance. For example, one often finds
that two targetsT1 andT2 scatter waves in a nearly identical
manner, when observed from distinct target-sensor orientations
θ1 andθ2, respectively. Theabsolutetarget-sensor orientation
θ1 or θ2 is typically unknown, since the target is distant or
concealed. The classification ambiguity may be resolved if the
targets are observed at a sequence of orientations (for which
only the relative target-sensor orientations are known), since
two targets are less likely to generate the samesequenceof
observations.

It has been demonstrated that multi-aspect target scattering
is often well characterized via a hidden Markov model (HMM)
[2]–[5]. Specifically, the target-sensor orientations, denoted by
angleθ, are divided into a set of states. Each state is defined
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as a contiguous subset of angles for which the associated
scattered fields are approximately stationary. When performing
a sequence of scattering measurements, from a sequence of
target-sensor orientations, one implicitly samples scattered
waveforms from a sequence of target states. It has been
demonstrated that the sequence of sampled states is often
modeled well as a Markov process [2]–[5]. In practice the
underlying sampled states are unobserved, or “hidden”, and
only the associated scattered fields are observed. This therefore
yields the aforementionedhiddenMarkov model.

For the detection phase, it is assumed that one has available
an HMM for the target of interest (or HMMs for multi-
ple targets of interest). The sequence of observationsot =
(o1, · · · , ot) is associated with a target if the HMM likelihood
is greater than a threshold; by varying the threshold the
receiver operating characteristic (ROC) is generated. When
performing classification, it is assumed that the object under
interrogation is one of a finite number of known targets, each
described by a distinct HMM. After performing a sequence of
observationsot, from t target-sensor orientations, classifica-
tion is effected by determining which HMM was most likely
to have generatedot. Assuming thatp(ot|Tk) represents the
likelihood of observingot for targetTk, the sequenceot is
associated with targetTi if p(ot|Ti) > p(ot|Tk), ∀Tk 6= Ti.

Assume that the sensor has observed the sequenceot, with
relative angular change between consecutive measurements
∆θt = (∆θ2, · · · , ∆θt). This paper addresses the question of
determining what change in angular position∆θt+1 should be
considered for collection of observationot+1, with the goal of
optimizing detection and classification. We solve this problem
by exploiting the theory of optimal experiments. Several
decades ago Fedorov wrote a book on this theory [6], and more
recently this topic has attracted the attention of the machine-
learning community, in the context of adaptive algorithm
training [7]. As discussed further below, for the classification
problem the choice of∆θt+1 is similar to that reported in
[6], [7], in which we employ a measure of entropy. The key
distinction is that in most previous optimal-experiment studies
it has been assumed that the measurements are statistically
independent [6], [7]. This assumption is required to achieve a
simple and usable form of the adaptive-sensing cost function.
We demonstrate here that the HMM assumption yields a
cost function that may also be evaluated easily, constituting
a sensing process that accounts for statistical dependence
between the sequence of observations. We also extend this
concept to the problem of target detection.

The remainder of the paper is organized as follows. In Sec.
II we review the HMM as applied to multi-aspect sensing, and
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demonstrate how it may be employed to yield a simple and
effective sequential sensing strategy for detection and classifi-
cation. Example sequential detection and classification results
are presented in Sec. III, for multi-aspect acoustic sensing of
underwater elastic targets. The results of the adaptive sensing
process are compared to results using uniform (non-adaptive)
angular sampling. Conclusions and future work are described
in Sec. IV.

II. OPTIMAL MULTI -ASPECTDETECTION AND

CLASSIFICATION

A. Geometric HMM with an angle-dependent state-transition
matrix

The hidden Markov model (HMM) has been employed
previously for the analysis of multi-aspect target identification
[2]–[5]. In this context an HMM state corresponds to a con-
tiguous range of target-sensor angles for which the associated
scattered signal is approximately stationary as a function of
orientation. Assume that statem of a given target resides
within the angular regionθm,1 ≤ θ ≤ θm,2, with the angular
extent of statem denoted byθ̂m = θm,2 − θm,1. Based on
simple geometrical considerations, and assuming that all target
orientations are uniformly probable when performing the first
measurement, the probability of being in statem on the first
measurement is computed as [2]

π(k)
m = θ̂(k)

m /

Mk∑

i=1

θ̂
(k)
i (1)

for Mk target states. In (1) we emphasize that the initial-state-
probability vector is a function of which target is considered,
here represented for targetTk. Note that we here assume that
the measurements are only a function of a single angle, over
2π; this concept may be extended to motion in two angular
dimensions, over a4π solid angle.

For each state we define the likelihood of making an
associated observation (or measurement)o. Let p(o|sm, Tk)
represent the likelihood of observingo in statem (denotedsm)
of targetTk. There are numerous ways to definep(o|sm, tk),
for example in terms of a Gaussian mixture [8]. For simplicity
we here employ vector quantization [9], with whicho is
mapped to a code in a pre-defined codebook. If the codebook is
composed ofN codesC = {õ1, õ2, · · · , õN}, each observed
o is mapped to one member ofC, and the state-dependent
observation probabilities are now characterized in terms of
p(õn|sm, Tk), with

∑N
n=1 p(õn|sm, Tk) = 1. The probabilities

p(õn|sm, Tk) for N codes andMk states defines anN ×Mk

matrix B(k).
What remains is defining the Markovian likelihood of

transitioning from statesm to statesl, in a given targetTk. In
previous studies [2]–[5] the angular sample rate∆θ between
consecutive measurements was assumed fixed, and the state-
transition matrix was constant. We now extend this concept
to the case in which∆θ varies from one measurement to
the next, allowing adaptive sensing. Specifically, the state-
transition matrix for targetTk, denotedA(k), is a function
of ∆θ.

For target Tk, let d
(k)
i,j ∈ (0, 2π) represent the shortest

angular distance to travel from the center of statei (at angle
θ
(k)
ic ) to the center of statej (at angleθ

(k)
jc ) in a prescribed

direction, i.e. clockwise or counter-clockwise. Further, assume
that ∆θ ≥ 0 represents the change in the relative angular
position on consecutive measurements, performed in the same
angular direction as used to defined(k)

i,j . Then the(i, j)th
element ofA(k)(∆θ), denoting the likelihood of transitioning
from statei to statej of targetTk when moving the angular
distance∆θ, is defined as

a
(k)
i,j (∆θ) =

w
(k)
j (d(k)

i,j −∆θ)
∑

j w
(k)
j (d(k)

i,j −∆θ)
(2)

wherew
(k)
j (θ) is a function defining statej of targetk. One

possible choice forw(k)
j (θ), and that used here, is

w
(k)
j (θ) =

1√
2π(σ(k)

j )2
exp

[
− θ2

2(σ(k)
j )2

]
(3)

To simplify the above analysis we have assumed that the sen-
sor always moves in a fixed direction (clockwise or counter-
clockwise). However, in practice the actual direction of sensor
motion is dictated by which path is shortest, e.g. it is easier
to move5◦ counter clockwise than clockwise355◦.

Considering (2) and (3) in greater detail, we note that the
likelihood of transitioning from statei to state j, a

(k)
i,j , is

maximized when∆θ = d
(k)
i,j , corresponding to transitioning

an angular distance commensurate with the distance between
the centers of these two states. Assume now that measurement
t is performed in statei, and that the next measurement at time
t + 1 is performed at an angular displacement∆θ 6= d

(k)
i,j . As

|∆θ−d
(k)
i,j | increases, the likelihood of transitioning from state

i to statej diminishes, as defined in (2) and (3). The rate of
which this likelihood diminishes is dictated by the angular
extent of statej relative to|∆θ− d

(k)
i,j |, since for simplicity it

is assumed that the measurement at timet was performed in
the center of statei. The size of the scalar parameterσ

(k)
j is

therefore dictated by the angular extent of statej in targetk
(see Sec. IIIA).

Assuming equally probable occurrence of theK targets, the
posterior probability of targetTk after observing the sequence
ot = (o1, · · · , ot) for the relative angle displacements∆θt =
(∆θ2, · · · , ∆θt) is

p(Tk|ot,∆θt) =
p(ot|∆θt, Tk)∑K

k=1 p(ot|∆θt, Tk)
(4)

where we have assumed thatp(Tk) = p(Tk|∆θc). Note
that the probability of which state is observed on the first
measurement is controlled by the initial-state probabilities in
(1); the probability of which states are observed on subsequent
measurements is controlled by the angular displacements∆θt.
Computation ofp(ot|∆θt, Tk) is performed using the classical
forward-backward algorithm applied widely in HMMs [8].
Specifically, the forward operator is defined as

α
(k)
t (i) ≡ p(ot, qt = s

(k)
i |∆θt, Tk) (5)
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whereqt denotes the state observed on observationt ands
(k)
i

denotes theith state of targetTk. Assuming that targetTk is
composed ofM (k) states, we now have

p(ot|∆θt, Tk) =
M(k)∑

i=1

α
(k)
t (i) (6)

The expressionα(k)
t+1(j) may be computed recursively as [8]

α
(k)
t+1(j) = p(ot+1|qt+1 = s

(k)
j , Tk)

M(k)∑

i=1

α
(k)
t (i)a(k)

i,j (∆θt+1)

(7)

B. Sequential optimization of sensor angular motion: classi-
fication

Assume a target has been detected and that it is known to be
one ofK candidate targets, denoted byTk, k = 1, · · · ,K. In
the classification stage the task is to declare the target as being
one of theK candidates, based on a sequence of observations
ot measured from the target under investigation. We assume
occurrence of each of theK targets is equally probable.

After performingt measurements we have the probabilities
p(Tk|ot,∆θt) for all targetsTk, and we now ask which angu-
lar displacement∆θt+1 should be considered for measurement
t + 1, to optimally enhance our ability to distinguish which
of the K targets is being interrogated. In this context the
uncertainty in the target identity may be quantified by the
entropy associated withp(Tk|ot, ∆θt) for all targetsTk, for
all targetsTk. Specifically, we compute the entropy [10]

Ht(ot,∆θt) = −
K∑

k=1

p(Tk|ot, ∆θt)× log p(Tk|ot, ∆θt) (8)

To minimize the uncertainty in target classification, the
objective is to minimize the entropy after performing mea-
surementt + 1, and therefore the angular motion∆θt+1 is
selected such thatHt(ot,∆θt) is minimized. However,∆θt+1

clearly must be selected before observingot+1. Consequently,
using the HMM, we compute theexpecteddecrease in entropy
upon performing measurement∆θt+1, with the expectation
performed overot+1. The expected entropy after performing
measurementt + 1 and utilizing angular displacement∆θt+1

is expressed as

H̃t+1(∆θt+1) = Eõt+1|ot,∆θt,∆θt+1Ht+1(ot, õt+1,∆θt, ∆θt+1)

=
N∑

n=1

[
Ht+1(ot, õt+1 = n,∆θt, ∆θt+1)

×
∑K

k=1 p(ot, õt+1 = n|∆θt, ∆θt+1, Tk)∑K
k=1 p(ot|∆θt, Tk)

]
(9)

where N is the size of codebook, and we explicitly note
that the observations are quantized, with each quantized
observation a member of the codebookC. The likelihood
p(ot, õt+1|∆θt, ∆θt+1, Tk) is computed efficiently by exploit-
ing the recursive properties of the HMM, as demonstrated
by (5)-(7). The detailed derivation of (9) is provided in the
Appendix.

Based on the above discussion, the angular displacement
∆θt+1 that maximizes theexpected reduction in target-
classification uncertainty is expressed as

∆θt+1 = arg max
∆θ

[
Ht(ot, ∆θt)− H̃t+1(∆θ)

]
(10)

The operations implied by (9) and (10) are performed sequen-
tially, to determine the angular position of all measurements
after the first.

C. Sequential optimization of sensor angular motion: detec-
tion

When performing detection one usually cannot assumea
priori knowledge of the clutter or false targets that may be
encountered (the targets of interest typically constitute a finite
set, while the potential false targets are of infinite number).
For simplicity we assume interest in detecting a single target,
represented by an associated HMM, with this readily extended
to the case of multiple targets of interest. No knowledge is
assumed with regard to the false targets.

Let ot = (o1, o2, · · · , ot) represent the sequence oft ob-
servations performed during detection, with associated relative
angular displacements∆θt = (∆θ2, · · · , ∆θt). Assuming that
targetT is the target of interest, the log-likelihood thatot is
associated withT is log p(ot|∆θt, T ). We select the angular
displacement for measurementt + 1, ∆θt+1, such that the
expectedlog-likelihood of targetT is maximized. Specifically,
we have

∆θt+1 =arg max
∆θ

Eot+1|ot,∆θt,∆θ,T log p(ot, ot+1|∆θt, ∆θ, T )
(11)

which corresponds to minimizing the entropy or uncertainty
in the likelihood of targetT . Note that, as in the case
of classification, (11) may be computed efficiently via the
recursive formulae (5)-(7). In the case of a discrete HMM,
for which the observations are vector quantized, (11) is

∆θt+1 = arg max
∆θ

N∑
n=1

p(õt+1 = n|õt,∆θt, ∆θ, T )

× log p(õt, õt+1 = n|∆θt, ∆θ, T ) (12)

The maximization in (11)-(12) is based on the assumption
that the object under interrogation is the target of interest,
T . If this assumption is true, the resulting optimal angular
displacements will produce a sequence that maximizes (on
average) the HMM log likelihood, with the maximization
performed in a “greedy” manner, one measurement at a time.
On the other hand, if the object is notT , then the selected
sequence of angles will in general not maximize the associated
likelihood, since in this case there is likely a mismatch between
the HMM and the scattering characteristics of the object under
interrogation. In this manner we implicitly distinguish between
T and false targets, using noa priori knowledge of the latter.

III. E XAMPLE DETECTION AND CLASSIFICATION RESULTS

A. HMM design

We demonstrate the sensing strategy outlined in Sec. II by
considering acoustic scattering data from underwater elastic
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targets. Details on the data and targets may be found in
[3]. The targets are rotationally symmetric, and therefore the
scattering data is collected over360◦ in a plane bisecting the
target axis of rotation. The data are sampled in1◦ increments,
in the far zone of the target (at radial distance large with
respect to the target dimensions).

To design an HMM for targetTk we require the initial-
state probabilitiesπ(k)

m , the state-transition matrixA(k), and
the state-dependent-probability matrixB(k). Based on the dis-
cussion in Sec. IIA, once the state decomposition of targetTk

is performed, these HMM parameters are computed directly.
With regard to defining the state-transition matrix for non-
uniform sampling, assumêθ(k)

j represents the angular extent

of statej for targetTk. The standard deviationσ(k)
j in (3) is

defined here aŝθ(k)
j /2.

The state decomposition is dependent on the target scatter-
ing physics, not on the angular sampling rate, and therefore
we may apply HMM-training tools developed previously us-
ing uniform sampling [2], [3]. When training to learn that
target state decomposition, we consider angular sampling at
5◦ between consecutive measurements, and the Baum-Welch
algorithm [2], [3], [8] is applied.

B. Classification results

To demonstrate the utility of the adaptive-sensing procedure,
we consider the following example. It is assumed that a target
has been detected, and that it is one of theK = 5 known
targets for which HMMs have been trained (the five targets are
described in [3]). The objective is to choose∆θt to optimize
classification, in the manner discussed in Sec. II. Assume that,
for adaptive sensing, the average total angular extent spanned
after t adaptive measurements is〈θtotal〉. For comparison
purposes, we compare the results of adaptive sensing to
sensing with uniform angular sampling between consecutive
measurements, using an angular sampling rate〈θtotal〉/(t−1).
One would not know〈θtotal〉 without the adaptive algorithm,
but this comparison allows us to address whether improved
performance is accrued because of the average total angular
aperturevis-à-vis the specific adaptively-determined angular
sampling positions considered.

The identification results using the adaptively sampled se-
quences and uniformly sampled sequences are presented in the
form of confusion matrices, in Tables 1-3, for a total oft = 5
observations. Table 1 shows results for∆θ = 5◦ sampling,
corresponding to the uniform sampling rate used while training
to define the target states (as well as the sampling used in pre-
vious studies [2], [3]), and Table 2 shows results for uniform
sampling corresponding to∆θ = 〈θtotal〉/4 = 48◦. Finally,
Table 3 shows results for the adaptive-sensing algorithm. The
confusion-matrix results are averaged across all possible initial
angles of observation. As indicated by examining Tables 1
and 2, the increased angular displacement on consecutive
measurements (with uniform angular sampling) significantly
enhances classification performance. This is expected, since
Table 2 has the potential of exploiting more fully the angular
diversity in the scattering physics from the five targets.

TABLE I

CONFUSION MATRIX FOR THE FIVE TARGETS IN[3], USING 5◦ UNIFORM

ANGULAR SAMPLING.

T1 T2 T3 T4 T5

T1 0.7667 0.0139 0.0333 0.0528 0.0133
T2 0.0694 0.7278 0.1111 0 0.0917
T3 0.0194 0.1861 0.7083 0.0111 0.0750
T4 0.0417 0 0.0222 0.9083 0.0278
T5 0.0389 0.0972 0.0500 0.0389 0.7750

TABLE II

CONFUSION MATRIX AS IN TABLE 1, USING 48◦ UNIFORM ANGULAR

SAMPLING.

T1 T2 T3 T4 T5

T1 0.9417 0.0278 0.0222 0.0056 0.0028
T2 0.0722 0.7917 0.1194 0 0.0167
T3 0.0333 0.2333 0.7167 0 0.0167
T4 0.0028 0 0 0.9556 0.0417
T5 0.0056 0.0083 0.0111 0.0361 0.9389

TABLE III

CONFUSION MATRIX AS IN TABLE 1, USING ADAPTIVE ANGULAR

SAMPLING (WITH AN AVERAGE ANGULAR SAMPLE RATE OF 48◦).

T1 T2 T3 T4 T5

T1 0.9750 0.0139 0.0028 0 0.0083
T2 0.0333 0.8806 0.0833 0 0.0028
T3 0.0083 0.1333 0.8444 0 0.0139
T4 0.0056 0 0 0.9639 0.0306
T5 0.0028 0.0028 0.0056 0.0083 0.9806

It is important to note that for the targets considered [2], [3]
the angular extent of a given stateθ̂m satisfies5◦ < θ̂m < 35◦.
Hence, five measurements with5◦ angular samplingmay
constitute transitions between two or more states. This explains
the relatively good results in Table 1. However, since the total
angular aperture in this case is only20◦, often only a single
state is interrogated, undermining performance. The improved
results in Table 2 are reflective of guaranteed state transitions,
with uniform angular sampling at∆θ = 48◦. We note that
when uniform ∆θ = 5◦ angular sampling is used for a
complete360◦ rotation about the target, perfect classification is
achieved. While this is encouraging, when sensing underwater
targets such as mines, such high-density sampling is very ex-
pensive in time and energy, and therefore undesirable (often a
very large number of targets must be interrogated), motivating
the adaptive algorithms. In the adaptive algorithm, as discussed
in the context of (2) and (3), for mathematical simplicity
we have assumed that the sensor moves in one direction. In
practice the adaptive direction of motion is dictated by the
closest angular distance required for movement to a desired
target state (with adaptive motion generally both in a clockwise
and counter-clockwise direction), and therefore the actual total
angular distance traveled in the adaptive measurement will
typically be smaller than that considered for the uniform-
sampled results in Table 2. The adaptive procedure conserves
both time and energy.
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Fig. 1. An example of the objective function defined in (10).

In addition, note that for uniform sampling in5◦ incre-
ments 72 measurements are required to cover360◦, for a
complete rotation. For 72 adaptively determined angles of
orientation we also do perfectly; in fact, we do perfectly after
10 adaptively determined observations. In these examples we
chose a relatively smaller number of observations (for which
uniform sampling does not achieve perfect performance) to
demonstrate the relative utility of the adaptive algorithmvis-
à-vis uniform sampling.

From Table 2 we note that TargetsT2 and T3 are classi-
fied least effectively, with this addressed with the adaptive
algorithm summarized in Table 3. Note that, on average,
Tables 2 and 3 consider the same total angular aperture,
so the performance improvement is attributed to the specific
(non-uniform) angles observed adaptively for Table 3. The
classification performance forT2 and T3 improves9% and
13% respectively when sensing adaptively (from Table 2 to
Table 3). The average correct classification rates across all
targets are respectively77%, 87% and 93% for Tables 1-3,
again underscoring the utility of adaptive sensing.

To examine the adaptive sampling procedure in greater
detail, Fig. 1 shows an example of the objective function
Ht − H̃t+1(∆θ) as defined in (10). Results are shown for
90circ variation of the sensor position, since this represents
the only non-redundant sensor positions as a consequence of
target symmetry [3]. In this example we consider targetT1

as defined in [3], and this figure is representative of the form
of Ht − H̃t+1(∆θ) for all examples considered. This figure
demonstrates that different selections of∆θt+1 do indeed
lead to different decreases in theexpectedentropy, and it
also indicates by the smoothness of this function that the
maximization in (10) is implemented easily. This has been
our observation for all examples considered on this data set.

In Figs. 2(a) and 2(b) we demonstrate the probability that
the sequenceot = (o1, · · · , ot) is associated with each of the
five HMMs, considering an exampleot from targetT1 [3]. The
initial angle of observation is the same in both cases, but in
Fig. 2(a) uniform angular sampling is used, while in Fig. 2(b)
the sampling is determined adaptively. The uniform sampling

rate in Fig. 2(a) corresponds to∆θ = 〈θtotal〉/4 = 48◦. It is
interesting to note in Figs. 2(a) and 2(b) that after a single
measurement the HMMs deem targetT2 to be most likely,
with the actual target(T1) second most likely. As indicated
in Fig. 2(a), with uniform sampling the HMM alternates
between deemingT1 andT2 most likely, while after the second
measurement the adaptive algorithm has strongly indicated
(via the HMM probabilities) that the target under interrogation
is (correctly) T1. After t = 4 observations the adaptive
algorithm correctly identifies the target with almost complete
certainty, i.e. the probability ofT1 is almost unity after four
observations. The phenomenon observed in Figs. 2(a) and 2(b)
does not happen all the time, based on numerical studies, but
it does happen often enough to yield the confusion-matrix
improvements indicated in Tables 2, 3.

For the examples considered in Figs. 2(a) and 2(b), in
Fig. 2(c) we plot the associated entropies of the posterior
target distribution as a function of number of observationst.
As demonstrated in Fig. 2(c), the adaptive sampling method
selects the observation angle such that each observation yields
a significant decrease in the uncertainty (entropy) of the
target under interrogation, while the uniform-sampling method
clearly does not address this criterion.

C. Detection results

In the detection example we assume that an HMM is avail-
able for targetT5 [3], this representing the “target of interest”.
TargetT5 is a cylindrical shell, while the six false targets are
two rocks, a log, a 55-gallon drum, a plastic container and
a small missile-like object (see [11] for details on the false
targets, or clutter). These false targets were not considered
when training the HMM forT5. The detection results in Fig. 3
are presented for a total oft = 5 observations, considering all
possible initial angles of observation for the targets and false
targets. Results are shown for adaptive sampling as well as for
uniform sampling; the uniformly-sampled results are shown
for 5◦ and22◦ increments, the latter representing the average
sample rate for the adaptive algorithm. The improved detection
performance of the adaptive algorithm is evident from Fig. 3.

IV. CONCLUSIONS

Hidden Markov models have been used for multi-aspect
target detection and identification, with the objective of op-
timizing the angular displacement considered on consecutive
observations. The method considered here represents an exten-
sion of previous research on optimal sequential experiments
[6], [7]. Specifically, through use of the HMM and its attractive
computational properties, we have removed the assumption
that the measurements are statistically independent. The ideas
developed here are applicable to multi-aspect sensing, as well
as other applications for which HMMs are applied sequentially
to process data.

The theory has been demonstrated using measured acoustic-
scattering data from five underwater elastic targets [3] and six
“false targets” or clutter items [11]. It has been demonstrated
that the adaptive sensing procedure yields significant improve-
ments in detection and classification performance.
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Fig. 2. (a) Probability that the object under interrogation is targetsT1−T5, as computed by the respective HMMs. The true target identity isT1. The angular
sample rate in this example is48◦; (b) using adaptive selection of the change in angular position; (c) Entropy defined by the probabilitiesp(Tk|ot, ∆θt),
for T1 − T5, as a function of the number of observationst. Results are shown for uniform angular sampling at5◦ and48◦, as well as for adaptive sensing.
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Fig. 3. Receiver operating characteristic (ROC) for distinguishing targetT5

[3] from six false targets [11]. Results are shown for adaptive selection of
the change in angular position as well as for uniform angular sampling at5◦
and22◦. The latter represents the average angular sample rate of the adaptive
algorithm.

There are many issues that deserve consideration in future
studies. For example, in this study the sensor was restricted
to move along an angular arc, and therefore the sensor range
to the target was assumed fixed. For the examples considered
here, for which there was no additive noise, this is reasonable,
since there is no increase in the signature signal-to-noise ratio
(SNR) as one moves closer to the target. In future research,
for which clutter or additive noise is considered, the optimal
sensor motion may be to move closer to the target (enhancing
the SNR), rather than to move along an angular arc. The
concept of expected entropy may still be used in this scenario,
but the underlying HMM representation must be augmented
to account for radial sensor motion.

We also note that the adaptive procedure developed here
is myopic or greedy, in the sense that we select the optimal
next angular sensor position without consideration of its im-
pact on future measurements. In a non-myopic approach one
would look two or more measurements ahead. The procedure
developed here may be extended to the non-myopic case,

by considering more than just one measurement ahead when
performing the expectations in (9) and (12). For example, if
two measurements ahead are considered, the expectation is
performed overot+1 and ot+2, with entropy minimization
performed over∆θt+1 and ∆θt+2. Issues to be explored
include the tradeoff between computational complexity and
algorithm performance.

Finally, in this study we have placed no restrictions on
the angular distance traveled on consecutive measurements. In
practice one may wish to penalize long travel distances, with
the goal of conserving energy. To address such an extension
the expected-entropy cost functions must be augmented with
a penalization term for large values of∆θ. This is a simple
algorithmic extension of significant practical importance.

APPENDIX

For the case of a discrete HMM, assume the codebook is
of sizeN . We have

H̃t+1(∆θt+1)= Eõt+1|ot,∆θt,∆θt+1Ht+1(ot, õt+1,∆θt, ∆θt+1)

=
N∑

n=1

p(õt+1 =n|õt, ∆θt, ∆θt+1)

×Ht+1(ot, õt+1 =n,∆θt, ∆θt+1) (13)

where

p(õt+1 =n|õt, ∆θt, ∆θt+1)

=
K∑

k=1

p(õt+1 = n|õt, ∆θt, ∆θt+1, Tk)p(Tk|õt,∆θt)

=
K∑

k=1

p(õt, õt+1 = n|∆θt,∆θt+1, Tk)
p(õt|∆θt, Tk)

p(Tk|õt,∆θt)

=
∑K

k=1 p(õt, õt+1 = n|∆θt,∆θt+1, Tk)∑K
k=1 p(õt|∆θt, Tk)

(14)

Substituting (A4) into (A1), we obtain (9).
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