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Abstract—Target detection and classification are considered as a contiguous subset of angles for which the associated
based on backscattered signals observed from a sequence okcattered fields are approximately stationary. When performing
target-sensor orientations, with the measurements performed a sequence of scattering measurements, from a sequence of
as a function of orientation (angle) at a fixed range. The . . . L
theory of optimal experiments is applied to adaptively optimize target-sensor orientations, one implicitly samples scattered
the sequence of target-sensor orientations considered. This iswaveforms from a sequence of target states. It has been
motivated by the fact that if fewer, better-chosen measurements demonstrated that the sequence of sampled states is often
are used then targets can be recognized more accurately with lessmodeled well as a Markov process [2]-[5]. In practice the
time and expense. Specifically, based on the previous Sequenc?mderlying sampled states are unobserved, or “hidden”, and

of observationso; = (o1, - - - ,0¢), the technique determines what . . .
change in relative targ(;et-sensor)orientation Af,.1 is optimal for only the associated scattered fields are observed. This therefore

performing measurement¢ + 1, to yield observation o,+;. The Yields the aforementionediddenMarkov model.
target is assumed distant or hidden, and therefore theabsolute For the detection phase, it is assumed that one has available

target-sensor orientation is unknown. We detail the adaptive- an HMM for the target of interest (or HMMs for multi-
sensing algorithm, employing a hidden Markov model (HMM) 0 targets of interest). The sequence of observatians
representation of the multi-aspect scattered fields, and example . - . - L
classification and detection results are presented for underwater ,(01’ -+, 0;) is associated with a target "_c the HMM likelihood
targets using acoustic scattering data. is greater than a threshold; by varying the threshold the
receiver operating characteristic (ROC) is generated. When
performing classification, it is assumed that the object under
interrogation is one of a finite number of known targets, each
described by a distinct HMM. After performing a sequence of
. INTRODUCTION observationso;, from ¢ target-sensor orientations, classifica-
Here are many sensing scenarios for which the targettisn is effected by determining which HMM was most likely
stationary and the sensor position may be moved seques-have generated;. Assuming thatp(o;|T}) represents the
tially, allowing observation of the unknown and concealed talikelihood of observingo, for targetTy, the sequence; is
get from a sequence of target-sensor orientations. For examplssociated with targét; if p(o¢|T;) > p(o¢|Tx),VTk # T;.
an unmanned underwater or airborne vehicle (UUV or UAV) Assume that the sensor has observed the sequenegth
may observe a target from a sequence of orientations. Suelative angular change between consecutive measurements
multi-aspect sensing is also widely observed in nature, fo@, = (Ad,,---, Ad;). This paper addresses the question of
example in bats [1]. Multi-aspect sensing exploits the fact thaétermining what change in angular positid#; , ; should be
many targets generate scattered fields that are a strong functiensidered for collection of observatiop, ;, with the goal of
of the target-sensor orientation. This strong aspect dependepgémizing detection and classification. We solve this problem
complicates the sensing task, but it may also enhance clas$i{i- exploiting the theory of optimal experiments. Several
cation and detection performance. For example, one often fintiscades ago Fedorov wrote a book on this theory [6], and more
that two targetsl; andT; scatter waves in a nearly identicalrecently this topic has attracted the attention of the machine-
manner, when observed from distinct target-sensor orientatidearning community, in the context of adaptive algorithm
01 andds,, respectively. Thebsolutetarget-sensor orientationtraining [7]. As discussed further below, for the classification
61 or 0, is typically unknown, since the target is distant oproblem the choice of\@,, is similar to that reported in
concealed. The classification ambiguity may be resolved if thg], [7], in which we employ a measure of entropy. The key
targets are observed at a sequence of orientations (for whiftbtinction is that in most previous optimal-experiment studies
only the relative target-sensor orientations are known), sinde has been assumed that the measurements are statistically
two targets are less likely to generate the saeguenceof independent [6], [7]. This assumption is required to achieve a
observations. simple and usable form of the adaptive-sensing cost function.
It has been demonstrated that multi-aspect target scatterig demonstrate here that the HMM assumption yields a
is often well characterized via a hidden Markov model (HMMgost function that may also be evaluated easily, constituting
[2]-[5]. Specifically, the target-sensor orientations, denoted by sensing process that accounts for statistical dependence
angled, are divided into a set of states. Each state is defingdtween the sequence of observations. We also extend this

) ) ) ) ) goncept to the problem of target detection.
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demonstrate how it may be employed to yield a simple andFor targetTy, let dz(»f“j) € (0,2m) represent the shortest
effective sequential sensing strategy for detection and classdfitgular distance to travel from the center of stafat angle
cation. Example sequential detection and classification reSLﬂlfg)) to the center of statg (at angle0§’§)) in a prescribed

are presented in Sec. Ill, for multi-aspect acoustic sensingdifection, i.e. clockwise or counter-clockwise. Further, assume
underwater elastic targets. The results of the adaptive sendingt A9 > 0 represents the change in the relative angular
process are compared to results using uniform (non-adaptipekition on consecutive measurements, performed in the same

angular sampling. Conclusions and future work are describgdgular direction as used to defimé?. Then the (i, j)th

in Sec. IV. element ofA*) (A0), denoting the likelihood of transitioning
from state; to statej of target7;, when moving the angular
Il. OPTIMAL MULTI-ASPECTDETECTION AND distanceAd, is defined as
| CI-_ASSIFICATION ) 0 g w;k>(d§5) — A9) X
A. Geometric HMM with an angle-dependent state-transition a; ; (A0) = &), (&) 2
. Soow:(d — AD)
matrix 3 2%

The hidden Markov model (HMM) has been employeWherewj(.k)(e) is a function defining statg of targetk. One
previously for the analysis of multi-aspect target identificatiogossible choice for!" (6), and that used here, is
[2]-[5]. In this context an HMM state corresponds to a con- !

tiguous range of target-sensor angles for which the associated (k) 1 92
scattered signal is approximately stationary as a function of w;(0) = IR _2(0(_1@))2 &)
orientation. Assume that state of a given target resides V 277(‘71‘ ) J

within the angular regiot,, 1 < 6 < 0,2, with the angular T4 simplify the above analysis we have assumed that the sen-
extent of staten denoted byd,, = 0,2 — 0m,1. Based On sor always moves in a fixed direction (clockwise or counter-
simple geometrical considerations, and assuming that all targgfckwise). However, in practice the actual direction of sensor

orientations are uniformly probable when performing the firghotion is dictated by which path is shortest, e.g. it is easier
measurement, the probability of being in stateon the first 5 moves° counter clockwise than clockwisesse.

measurement is computed as [2] Considering (2) and (3) in greater detail, we note that the
My, likelihood of transitioning from stateé to state j, agij), is
) = 9,(5)/295}9) (1) maximized whenAfd = dEZ), corresponding to transitioning

i=1 an angular distance commensurate with the distance between

for M, target states. In (1) we emphasize that the initial-stafkle centers of these two states. Assume now that measurement
probability vector is a function of which target is considered,is performed in staté and that the next measurement at time
here represented for targ&t. Note that we here assume that + 1 is performed at an angular displacemextt # d.". As
the measurements are only a function of a single angle, o\ym—dgf“ﬂ increases, the likelihood of transitioning from state
2m; this concept may be extended to motion in two angularto statej diminishes, as defined in (2) and (3). The rate of
dimensions, over dx solid angle. which this likelihood diminishes is dictated by the angular

For each state we define the likelihood of making aextent of state relative to| A6 — dz(.?\, since for simplicity it
associated observation (or measurement).et p(o|s,,,T;) is assumed that the measurement at tinveas performed in
represent the likelihood of observingn statem (denoteds,,) the center of staté. The size of the scalar paramete](ak) is
of targetT},. There are numerous ways to defip@|s,.,tx), therefore dictated by the angular extent of staie targetk
for example in terms of a Gaussian mixture [8]. For simplicitysee Sec. IlIA).
we here employ vector quantization [9], with whichis  Assuming equally probable occurrence of fiietargets, the
mapped to a code in a pre-defined codebook. If the codeboolissterior probability of targef;, after observing the sequence

composed ofV codesC = {61,02,--- ,0n}, €ach observed o, = (01,--- ,04) for the relative angle displacement®, =
o is mapped to one member @', and the state—dependent(AQQ’ SN ARS

observation probabilities are now characterized in terms of

P(6n|$m, T1), With S p(6,,|$,m, Ti) = 1. The probabilities p(Ti|oy, AB,) = If(ot'Aet’T’“) (4)
p(6n|5m, Ty) for N codes andV/,, states defines aiv x M;, > w1 p(0:| 2O, T})

matrix B*).

o . o where we have assumed that7,) = p(T%|A6.). Note
What remains is defining the Markovian likelihood Okt the probability of which state is observed on the first
transitioning from state;, to states;, in a given target’s. IN - eagyrement is controlled by the initial-state probabilities in
previous studies [2]-[5] the angular sample raté between (1). the probability of which states are observed on subsequent
consecutive measurements was assumed fixed, and the stateisurements is controlled by the angular displacensats
transition matrix was constant. We now extend this concegbmputation ofy(os| A8, T} is performed using the classical

to the case in whichA¢ varies from one measurement gy ard-backward algorithm applied widely in HMMs [8].
the next, allowing adaptive sensing. Specifically, the Stat@beoifically, the forward operator is defined as
transition matrix for target’;;, denotedA*), is a function

of A a® (i) = ploy, ¢r = s A6, Ty) (5)



whereg; denotes the state observed on observatiand s’ Based on the above discussion, the angular displacement

%

denotes theth state of targef,. Assuming that targel is A6, that maximizes theexpectedreduction in target-

composed of\/ (%) states, we now have classification uncertainty is expressed as
M® A6t+1 = arg max Ht(Ot, Aet) — .Ht+1(A9) (10)
CHININ SR PRI 0) (6) A0
i=1 The operations implied by (9) and (10) are performed sequen-

. : tially, to determine the angular position of all measurements
The expressmra)zg’_?1 (j) may be computed recursively as [8] afte): the first g P
MR
Oéii)l (7) = ploty1lqerr = 8§~k),Tk) Z a (i)af;?(AGtH) C. Sequential optimization of sensor angular motion: detec-
i=1 tion

)

When performing detection one usually cannot assame
. L . priori knowledge of the clutter or false targets that may be
B. Sequential optimization of sensor angular motion: classiycountered (the targets of interest typically constitute a finite
fication set, while the potential false targets are of infinite number).
Assume a target has been detected and that it is known toHze simplicity we assume interest in detecting a single target,
one of K candidate targets, denoted By, k =1,--- , K. In represented by an associated HMM, with this readily extended
the classification stage the task is to declare the target as bamghe case of multiple targets of interest. No knowledge is
one of theK candidates, based on a sequence of observatiessumed with regard to the false targets.
o; measured from the target under investigation. We assumé.et o; = (01,02, ,0;) represent the sequence obb-
occurrence of each of th& targets is equally probable. servations performed during detection, with associated relative
After performingt measurements we have the probabilitiesngular displacements8; = (Af, - - - , Af;). Assuming that
p(Tx|o:, AG;) for all targetsTy,, and we now ask which angu-targetT is the target of interest, the log-likelihood thai is
lar displacemenf\@;; should be considered for measuremergssociated withl" is log p(o:|A8:,T). We select the angular
t + 1, to optimally enhance our ability to distinguish whichdisplacement for measurementt- 1, A#;,;, such that the
of the K targets is being interrogated. In this context thexpectedog-likelihood of targetl” is maximized. Specifically,
uncertainty in the target identity may be quantified by th&e have
entropy associated with(7y|o:, A@;) for all targetsTy, for

all targetsT},. Specifically, we compute the entropy [10] Ay =arg max Eorrlor.00,,80,7108p(01,0141|A0;, A), T)

(11)
which corresponds to minimizing the entropy or uncertainty
in the likelihood of target7T. Note that, as in the case
of classification, (11) may be computed efficiently via the
To minimize the uncertainty in target classification, thescursive formulae (5)-(7). In the case of a discrete HMM,

objective is to minimize the entropy after performing meaor which the observations are vector quantized, (11) is
surementt + 1, and therefore the angular motiahf,;, is

selected such thdf;(o;, Af,) is minimized. HoweverAd,
clearly must be selected before observing,. Consequently, —

using the HMM, we compute thexpectedlecrease in entropy -

upon performing measurementd; |, with the expectation x10g (01,001 = n|A0, A9, T)  (12)
performed ovemn; ;. The expected entropy after performing The maximization in (11)-(12) is based on the assumption
measurement+ 1 and utilizing angular displacemertd,,; that the object under interrogation is the target of interest,
is expressed as T. If this assumption is true, the resulting optimal angular
. _ displacements will produce a sequence that maximizes (on
Hi11(A0i11) = o,y jo,.00,.00, 4 Hiy1(01, 011, ABr, A1) average) the HMM log likelihood, with the maximization

K
Hy(oy, AB;) = — ZP(TMOn A6;) xlog p(Ty|o:, AB:) (8)
k=1

N
Aat_;,_l = arg HiaGX Z p(0t+1 = ’I'L|Oig7 AOt, A@, T)

N performed in a “greedy” manner, one measurement at a time.

= Z [Ht+1(0ta5t+1 =n, A0, Ab;11) On the other hand, if the object is n@t, then the selected
n=1 X sequence of angles will in general not maximize the associated
" > k=1 P(0Ot, 0141 = n|AO, Ay 11, T) ©) likelihood, since in this case there is likely a mismatch between

Zk{il p(0:|A0,, T}) the HMM and the scattering characteristics of the object under
B interrogation. In this manner we implicitly distinguish between

where NV is the size of codebook, and we explicitly no,tefdand false targets, using reopriori knowledge of the latter.
that the observations are quantized, with each quantize

observation a member of the codebo@Gk The likelihood

p(04, 0111|260, A6y, Ty) is computed efficiently by exploit- ]

ing the recursive properties of the HMM, as demonstratd HMM design

by (5)-(7). The detailed derivation of (9) is provided in the We demonstrate the sensing strategy outlined in Sec. Il by
Appendix. considering acoustic scattering data from underwater elastic

I1l. EXAMPLE DETECTION AND CLASSIFICATION RESULTS



. . TABLE |
targets. Details on the data and targets may be found in
ONFUSION MATRIX FOR THE FIVE TARGETS IN[3], USING 5°

[3]. The targets are rotationally symmetric, and therefore the
scattering data is collected ov@60° in a plane bisecting the
target axis of rotation. The data are sampled‘rincrements,

UNIFORM
ANGULAR SAMPLING.

T1 T2 T3 T4 T5

in the far zone of the target (at radial distance large with Tr [ 0.7667 | 0.0139 | 0.0333 | 0.0528 | 0.0133
respect to the target dimensions). T, | 0.0694 | 0.7278 | 0.1111| 0 0.0917

To design an HMM for targefl;, we require the initial- Is | 00194 ] 0.1861 | 0.7083 ] 0.0111 | 0.0750
tate probabilitiesr"”, the state-transition matrid®”, and Ta 1000710 00222 | 99085 | 90278
state probabiliiesry,,”, the state-transition ma » a Ts | 0.0389 | 0.0972 | 0.0500 | 0.0389 | 0.7750

the state-dependent-probability matf*) . Based on the dis-
cussion in Sec. llA, once the state decomposition of tafget

is performed, these HMM parameters are computed directly. TABLE Il
With regard to defining the state-transition matrix for non- CONFUSION MATRIX AS IN TABLE 1, USING 48° UNIFORM ANGULAR
uniform sampling, assumé§k) represents the angular extent SAMPLING.
of state; for target7Ty. The standard deviationj(.k) in (3) is P " - - -
. ~(k 1 2 3 4 5
defined here aéé ) /2. T1 | 0.9417 | 0.0278 | 0.0222 | 0.0056 | 0.0028
The state decomposition is dependent on the target scatter- ;z 8-8;25 8-;2%; 8-%2‘71 8 8-812;
ing physics, not on the_a.ngular sampling rate, an.d therefore T 0002810 5 5 OEEE T G.0417
we may apply HMM-tralnlng tools developed DYEVIOUSW us- Ts | 0.0056 | 0.0083 | 0.0111 | 0.0361 | 0.9389

ing uniform sampling [2], [3]. When training to learn that
target state decomposition, we consider angular sampling at

5° between consecutive measurements, and the Baum—WeIchC 1ABLE1'”
algorithm [2], [3], [8] iS applled ONFUSION MATRIX AS IN TABLE 1, USING ADAPTIVE ANGULAR

SAMPLING (WITH AN AVERAGE ANGULAR SAMPLE RATE OF48°).

B. Classification results T P T3 Ty Ts
- . . T1 | 0.9750 | 0.0139| 0.0028 | O 0.0083
To demonstrate the utility of the adaptive-sensing procedure, T, | 0.0333| 0.8806 | 0.0833 | O 0.0028
we consider the following example. It is assumed that a target 15 8-8832 8-1333 8-8444 89639 8-8;32
o Ty | O. . .
has been detected, and that it is one of fie= 5 known T: 10,0028 | 0.0028 | 0.0056 | 0.0083 | 0.9806

targets for which HMMs have been trained (the five targets are
described in [3]). The objective is to choos#, to optimize
classification, in the manner discussed in Sec. Il. Assume that,
for adaptive sensing, the average total angular extent spannet is important to note that for the targets considered [2], [3]
after ¢ adaptive measurements i9;.:,;). FOr comparison the angular extent of a given stai,a satisfiesh® < ém < 35°.
purposes, we compare the results of adaptive sensingHence, five measurements witif angular samplingmay
sensing with uniform angular sampling between consecutigenstitute transitions between two or more states. This explains
measurements, using an angular sampling {@&tg.:)/(t—1). the relatively good results in Table 1. However, since the total
One would not know6,,.,;) without the adaptive algorithm, angular aperture in this case is ord§°, often only a single
but this comparison allows us to address whether improvetate is interrogated, undermining performance. The improved
performance is accrued because of the average total angusults in Table 2 are reflective of guaranteed state transitions,
aperturevis-a-vis the specific adaptively-determined angulawith uniform angular sampling af\d = 48°. We note that
sampling positions considered. when uniform A = 5° angular sampling is used for a
The identification results using the adaptively sampled sesmplete360° rotation about the target, perfect classification is
guences and uniformly sampled sequences are presented irattiéeved. While this is encouraging, when sensing underwater
form of confusion matrices, in Tables 1-3, for a totaltet 5 targets such as mines, such high-density sampling is very ex-
observations. Table 1 shows results fda = 5° sampling, pensive in time and energy, and therefore undesirable (often a
corresponding to the uniform sampling rate used while trainingry large number of targets must be interrogated), motivating
to define the target states (as well as the sampling used in ghes adaptive algorithms. In the adaptive algorithm, as discussed
vious studies [2], [3]), and Table 2 shows results for unifornm the context of (2) and (3), for mathematical simplicity
sampling corresponding t&A\d = (0;,14;)/4 = 48°. Finally, we have assumed that the sensor moves in one direction. In
Table 3 shows results for the adaptive-sensing algorithm. Theactice the adaptive direction of motion is dictated by the
confusion-matrix results are averaged across all possible initiddsest angular distance required for movement to a desired
angles of observation. As indicated by examining Tablestarget state (with adaptive motion generally both in a clockwise
and 2, the increased angular displacement on consecutivel counter-clockwise direction), and therefore the actual total
measurements (with uniform angular sampling) significantgngular distance traveled in the adaptive measurement will
enhances classification performance. This is expected, sitggically be smaller than that considered for the uniform-
Table 2 has the potential of exploiting more fully the angulasampled results in Table 2. The adaptive procedure conserves
diversity in the scattering physics from the five targets. both time and energy.



rate in Fig. 2(a) corresponds 0 = (0;,4;)/4 = 48°. It is

013 interesting to note in Figs. 2(a) and 2(b) that after a single
1ol measurement the HMMs deem tardgt to be most likely,
' with the actual targe{T;) second most likely. As indicated
in Fig. 2(a), with uniform sampling the HMM alternates
0.11r between deeming@; andT, most likely, while after the second
- measurement the adaptive algorithm has strongly indicated
g 01 ] (via the HMM probabilities) that the target under interrogation
is (correctly) T1. After t = 4 observations the adaptive
0.09} 1 algorithm correctly identifies the target with almost complete
certainty, i.e. the probability of'1 is almost unity after four
0.08} 1 observations. The phenomenon observed in Figs. 2(a) and 2(b)
does not happen all the time, based on numerical studies, but
i i i i it does happen often enough to yield the confusion-matrix
0 20 40 60 80 100

improvements indicated in Tables 2, 3.
For the examples considered in Figs. 2(a) and 2(b), in
Fig. 1. An example of the objective function defined in (10). Fig. 2(c) we plot the associated entropies of the posterior
target distribution as a function of number of observations
As demonstrated in Fig. 2(c), the adaptive sampling method
In addition, note that for uniform sampling iB° incre- selects the observation angle such that each observation yields
ments 72 measurements are required to c@6r, for a a significant decrease in the uncertainty (entropy) of the
complete rotation. For 72 adaptively determined angles target under interrogation, while the uniform-sampling method
orientation we also do perfectly; in fact, we do perfectly afterlearly does not address this criterion.
10 adaptively determined observations. In these examples we
chgse a relativ_ely smaller numb_er of observations (for whigh petection results
uniform sampling does not achieve perfect performance) to
demonstrate the relative utility of the adaptive algoritkirs-
a-vis uniform sampling.
From Table 2 we note that Targefs and 75 are classi-

Relative Angular Displacement (A8)

In the detection example we assume that an HMM is avail-
able for targefl; [3], this representing the “target of interest”.
TargetTs is a cylindrical shell, while the six false targets are

fied least effectively, with this addressed with the adapti\HQ/0 rocks,' a'log., a 55.-gallon drum, a plastlg container and
algorithm summarized in Table 3. Note that, on averag@,Small missile-like object (see [L1] for details on the false
Tables 2 and 3 consider the same total angular apertlfra%gets' or clutter). These false targets_ were not _con_5|dered
so the performance improvement is attributed to the speciW en training the HMM forT5. The detec_uon result_s |n_F|g. 3
(non-uniform) angles observed adaptively for Table 3. THre presented for a total of= 5 observations, considering all
classification performance fdF, and T improves9% and possible initial angles of observation for the targets and false
13% respectively when sensing adaptively (from Table 2 t@r_gets. Result_s are showr_1 for adaptive sampling as well as for
Table 3). The average correct classification rates across Lg”form sampling; the uniformly-sampled results are shown

targets are respectively7%, 87% and 93% for Tables 1-3, for 5 Iandt22f ||:ﬁrenljentts_, thel Iathhr re;_arrr(]asgntmg thde da\;er?ge
again underscoring the utility of adaptive sensing. sample rate for the adaptive aigorithm. The improved detection

To examine the adaptive sampling procedure in greaﬁgrformance of the adaptive algorithm is evident from Fig. 3.

detail, Fig. 1 shows an example of the objective function
H, — Hy,1(Ad) as defined in (10). Results are shown for IV. CONCLUSIONS
90¢rc variation of the sensor position, since this representsHidden Markov models have been used for multi-aspect
the only non-redundant sensor positions as a consequencéagjet detection and identification, with the objective of op-
target symmetry [3]. In this example we consider tar@et timizing the angular displacement considered on consecutive
as defined in [3], and this figure is representative of the forobservations. The method considered here represents an exten-
of H, — ﬁtH(Ae) for all examples considered. This figuresion of previous research on optimal sequential experiments
demonstrates that different selections &f;.; do indeed [6], [7]. Specifically, through use of the HMM and its attractive
lead to different decreases in thlexpectedentropy, and it computational properties, we have removed the assumption
also indicates by the smoothness of this function that tlieat the measurements are statistically independent. The ideas
maximization in (10) is implemented easily. This has beateveloped here are applicable to multi-aspect sensing, as well
our observation for all examples considered on this data sets other applications for which HMMs are applied sequentially
In Figs. 2(a) and 2(b) we demonstrate the probability th&d process data.
the sequence; = (o1, -, 0;) is associated with each of the The theory has been demonstrated using measured acoustic-
five HMMs, considering an examplg from target?; [3]. The scattering data from five underwater elastic targets [3] and six
initial angle of observation is the same in both cases, but ‘ifalse targets” or clutter items [11]. It has been demonstrated
Fig. 2(a) uniform angular sampling is used, while in Fig. 2(that the adaptive sensing procedure yields significant improve-
the sampling is determined adaptively. The uniform samplingents in detection and classification performance.
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Fig. 2. (a) Probability that the object under interrogation is tardats- 75, as computed by the respective HMMs. The true target identiy; isSThe angular
sample rate in this example #83°; (b) using adaptive selection of the change in angular position; (c) Entropy defined by the probai{iliti¢s;, A6;),
for T1 — T5, as a function of the number of observatian®Results are shown for uniform angular samplinggatand48°, as well as for adaptive sensing.
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P

Fig. 3. Receiver operating characteristic (ROC) for distinguishing tafget
[3] from six false targets [11]. Results are shown for adaptive selection
the change in angular position as well as for uniform angular sampliag at

by considering more than just one measurement ahead when
performing the expectations in (9) and (12). For example, if
two measurements ahead are considered, the expectation is
performed overo;,; and o2, With entropy minimization
performed overAd,,; and Af;,-. Issues to be explored
include the tradeoff between computational complexity and
algorithm performance.

Finally, in this study we have placed no restrictions on
the angular distance traveled on consecutive measurements. In
practice one may wish to penalize long travel distances, with
the goal of conserving energy. To address such an extension
the expected-entropy cost functions must be augmented with
a penalization term for large values Aff. This is a simple
algorithmic extension of significant practical importance.

APPENDIX

For the case of a discrete HMM, assume the codebook is
of .
of size N. We have

and22°. The latter represents the average angular sample rate of the adaptive

algorithm.

Hiy 1 (AOi1) = Es,, jo,,060,,00,1 Hi+1(04, 0141, A0, A0y 1)
N

= Z p(Or+1=n|0, AOy, Abyy1)

There are many issues that deserve consideration in future.=1
studies. For example, in this study the sensor was restricted X Hyp1(0t,0011=mn, A0, A0;11) (13)
to move along an angular arc, and therefore the sensor ra%e
, . re
to the target was assumed fixed. For the examples considefat
here, for which there was no additive noise, this is reasonablgs, , | =n|o;, AB;, A1)

since there is no increase in the signature signal-to-noise ratio K
(SNR) as one moves closer to the target. In future research, = Zp(6t+1 = nloy, A0y, Ay 1, Ty, )p(Ty |0y, AOy)
for which clutter or additive noise is considered, the optimal k=1

sensor motion may be to move closer to the target (enhancing
the SNR), rather than to move along an angular arc. The
concept of expected entropy may still be used in this scenario,
but the underlying HMM representation must be augmented S P04, 641 = n|AB;, Aby iy, Ty)

to account for radial sensor motion.

We also note that the adaptive procedure developed here

p(Ti|or, ABy)

_ i P(0¢, 0141 = n|AO;, AbB;y 1, Ty)
= p(0¢|A0y, Tk)

14
Zszl p(0| A8, T},) 4

is myopic or greedy, in the sense that we select the optini#ibstituting (A4) into (A1), we obtain (9).

next angular sensor position without consideration of its im-

pact on future measurements. In a non-myopic approach one REFERENCES

would look two or more measurements ahead. The procedufg j . simmons, P. A. Saillant, and S. P. Dear, “Through a bat's ear,”
developed here may be extended to the non-myopic case, IEEE Spectrumvol. 23, no. 3, pp. 46-48, mar. 1992.



(2]

(3]

(4]

(5]

(6l
(7]

(8]

(9]
[10]

[11]

P. R. Runkle, P. K. Bharadwaj, L. Couchman, and L. Carin, “Hidden
Markov models for multiaspect target classificatidiEE Trans. Signal
Proc,, vol. 47, pp. 2035-2040, Jul. 1999.

P. Runkle, L. Carin, L. Couchman, T. J. Yoder, and J. A. Bucaro,
“Multi-aspect target identification with wave-based matching pursuits
and continuous hidden Markov model$ZEE Trans. Pattern Analysis
and Machine Intelligencevol. 21, pp. 1371-1378, Dec. 1999.

X. Liao, P. Runkle, and L. Carin, “Identification of ground targets from
sequential HRR radar signatureHPEE Transactions on Aerospace and
Electronic Systemsvol. 38, no. 4, pp. 1230-1242, Oct. 2002.

P. D. Gader, M. Mystkowski, and Z. Yunxin, “Landmine detection with
ground penetrating radar using hidden Markov moddEEE Trans.
Geoscience and Remote Sensivig). 39, pp. 1231-1244, Jun. 2001.

V. V. Fedorov, Theory of optimal experiments Academic Press, 1972.
D. MacKay, “Information-based objective functions for active data
selection,”Neural Computationvol. 4, no. 4, pp. 590-604, 1992.

L. R. Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognitioitoc. IEEE vol. 77, no. 2, pp. 257—
286, 1989.

R. M. Gray, “Vector quantization|EEE ASSP Magazin@p. 4—29, Apr.
1984.

T. M. Cover and J. A. Thomaglements of Information Theary New
York, NY: Wiley, 1991.

N. Dasgupta, P. Runkle, L. Carin, L. Couchman, T. Yoder, J. Bucaro, and
G. Dobeck, “Class-based target identification with multiaspect scattering
data,” IEEE J. Oceanic Engwvol. 28, pp. 271-282, Apr. 2003.



