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Non-Myopic Multi-Aspect Sensing with Partially
Observable Markov Decision Processes

Shihao Ji, Ronald Parr and Lawrence Carin,Fellow, IEEE

Abstract— We consider the problem of sensing a concealed or
distant target by interrogation from multiple sensors situated on
a single platform. The available actions that may be taken are
selection of the next relative target-platform orientation and the
next sensor to be deployed. The target is modeled in terms of a
set of states, each state representing a contiguous set of target-
sensor orientations over which the scattering physics is relatively
stationary. The sequence of states sampled at multiple target-
sensor orientations may be modeled as a Markov process. The
sensor only has access to the scattered fields, without knowledge
of the particular state being sampled, and therefore the problem
is modeled as apartially observableMarkov decision process
(POMDP). The POMDP yields a policy, in which the belief state
at any point is mapped to a corresponding action. The non-
myopic policy is compared to an approximate myopic approach,
with example results presented for measured underwater acoustic
scattering data.

Index Terms— Multi-aspect sensing, partially observable
Markov decision processes (POMDPs), hidden Markov models
(HMMs), non-myopic algorithms.

I. I NTRODUCTION

T He integration of sensing and processing is of increas-
ing importance for many applications, including new

unmanned sensing platforms that have the capacity to adapt
to their environment [1]. The problem may be posed as one
of sensor management. Specifically, given particular sensor
assets and previously collected data, one may ask which data
should be collected next to best advance a sensing mission.
Techniques that have been applied to this problem include
ideas from the theory of optimal experiments [2], wherein
one may be interested in minimizing the uncertainty (entropy)
of parameters estimated within an inversion [3]–[5]. Most of
these previous studies have been myopic [2]–[5], in that they
seek to perform the next measurement that is most informative,
for example in terms of a measure of entropy [2], without
considering how the measurement may affect those that come
subsequently.

Partially observable Markov decision processes (POMDPs)
[6]–[9] are well suited to non-myopic sensing problems, when
the underlying physics supports a Markov representation. It
has been demonstrated previously, with fixed sensor actions,
that sensing a target from multiple target-sensor orientations
may be modeled via a hidden Markov model (HMM) [10].
Each state of the HMM corresponds to a contiguous set of
target-sensor orientations for which the scattering physics is
relatively stationary (see Fig. 1). When the sensor interrogates
a given target from a sequence of target-sensor orientations, it
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Fig. 1. Multi-aspect sensing of a concealed target. Thekth statesk is a
contiguous set of target-sensor orientations over which the scattered fields are
approximately stationary (K =8 states are shown). HereT observations are
performed,{o1, o2, · · · , oT }, as performed at a sequence ofrelative sensor
angular positions, where∆ϕt+1 = ϕt+1 − ϕt are orientations.

inherently samples different target states. For most problems of
interest the target is either distant or concealed, and therefore
the underlying states are “hidden”. The sensor does have
access to the associated scattered fields, thereby motivating
an HMM representation. In the HMM formulation the sensing
actions are assumed fixed (e.g., a constant relative change
in target-sensor orientation), and therefore there is limited
opportunity for adaptive sensing. In this paper we extend the
HMM formalism to a POMDP, yielding a natural and flexible
adaptive-sensing framework.

We assume access to a single platform that may carry
multiple sensors. The objective is to classify the target under
interrogation based upon multi-aspect sensing data. There are
three questions that may be asked, based on previous obser-
vations and on underlying models of the targets of interest: (i)
which relative target-platform orientation should be considered
next, (ii) which sensor should be deployed next, and (iii) when
should the sensing be terminated and a classification decision
made?

It is assumed that a model is available for all targets that may
be interrogated, and the objective is to perform classification
(the model is designed assuming access to training data,
and HMM learning algorithms are employed [10]). For this
classification task the POMDP is here formulated in terms of
Bayes risk [11], withCuv representing the cost of declaring
targetu when actually the target under interrogation is target
v. Using the same units as associated withCuv, we also
define a cost for each class of sensing action. After a set
of sensing actions and observations the sensor may utilize
the belief state [7] to quantify the probability that the target
under interrogation corresponds to targetu. The POMDP



2

yields a non-myopic policy for the optimal sensor action given
the belief state, where here the sensor actions correspond to
defining the next relative target-sensor orientation and the next
sensor to deploy. In addition, the POMDP gives a policy for
when the belief state indicates sensing should be terminated
and a classification decision made. The latter is implicitly
manifested when the expected future reduction in Bayes risk
is not justified by the expected future cost in sensing actions.
A summary of actions, states and costs is provided in Table I.

Learning a non-myopic policy may be computationally
expensive [6], [7], [12]; however, this is an offline calculation
based on the underlying target models. Once the policy has
been so learned, the actual sensing may be performed in near
real time, limited only by the time required to compute the
belief state [7] and then map this into the corresponding (pre-
optimized) sensor action.

The related technique of multi-armed bandits [13], [14]
has been considered for similar sensing problems. POMDPs
have also been applied to the problem of multi-sensor target
tracking [8]. The general problem of employing POMDPs for
multi-sensor classification of multiple targets is discussed in
[15], [16], applied to large problems but with simplified target
models. Krishnamurthy and colleagues [17], [18] have also re-
cently employed POMDPs for several other sensing problems.
Our application of the POMDP framework to the problem
of underwater acoustic scatter from five elastic targets is, to
our knowledge, the first successful application of POMDPs
to a problem of this scale using actual, measured scattering
data. This work has significant utility in the context of sensing
underwater targets via sensors deployed on unmanned under-
water vehicles (UUVs).

The remainder of the paper is organized as follows. In Sec.
II we introduce the POMDP formulation for multi-aspect,
multi-sensor interrogation of a concealed or distant target.
The non-myopic formulation is compared to an approximate
myopic framework. In Sec. III we present example results
for acoustic sensing of underwater elastic targets, based on
measured scattering data, with comparisons between myopic
and non-myopic strategies. Conclusions are provided in Sec.
IV.

II. POMDP FORMULATION

A. Markov model of target sensing

The scattering physics from a complex target is typically a
strong function of the target-sensor orientation [10]. However,
there are generally contiguous ranges of target-sensor orienta-
tions for which the scattering physics is relatively stationary.
Each such set of angles is termed a state [10]. To simplify
notation we assume that the targets of interest are rotationally
symmetric, and the scattered fields are observed in a plane
bisecting the axis of symmetry (see Fig. 1). Consequently, at
a fixed radial distancer from the target center the scattered
fields are characterized by a single angleϕ. For a target
with K states, the states are defined by the set of angles
{ϕ0, ϕ1, · · · , ϕK}, with the kth state corresponding to the
contiguous range of anglesϕ ∈ [ϕk−1, ϕk].

Assume a sequence of measurements is performed, at a
sequence of target-sensor orientations. The particular state

being interrogated at a given time is “hidden”, because the
target is distant or concealed. It is assumed that, on consecutive
measurements, the probability of transitioning from any given
state to another state may be modeled as a Markov process.
The corresponding state-transition probabilities are modeled
as follows. Letdi,j represent the shortest angular distance
to travel in a prescribed direction, i.e. clockwise or counter-
clockwise, from the center of statesi to the center of state
sj . Further, assume that∆ϕ≥ 0 represents the change in
the relative angular position on consecutive measurements,
performed in the same angular direction as used to definedi,j .
The probability of transitioning from statesi to statesj on
consecutive measurements separated by∆ϕ is defined as

p(sj |si, ∆ϕ) ≡ wj(di,j −∆ϕ)∑K
j=1 wj(di,j −∆ϕ)

(1)

where

wj(ϕ) =
1√
2πσ2

j

exp

(
− ϕ2

2σ2
j

)
(2)

with σj = (ϕj − ϕj−1)/2. To simplify the above analysis we
have assumed that the sensor always moves in a fixed direction
(clockwise or counter-clockwise). However, in practice the
actual direction of sensor motion may be dictated by which
path is shortest, e.g. it is easier to move5◦ counter clockwise
than clockwise355◦.

Considering (1) and (2) in greater detail, we note that
the likelihood of transitioning from statei to state j, is
maximized when∆ϕ = di,j , corresponding to transitioning
an angular distance commensurate with the distance between
the centers of these two states. Assume now that measurement
t is performed in statei, and that the next measurement at time
t+1 is performed at an angular displacement∆ϕ 6= di,j . As
|∆ϕ−di,j | increases, the likelihood of transitioning from state
i to statej diminishes, as defined in (1) and (2). The rate of
which this likelihood diminishes is dictated by the angular
extent of statej relative to|∆ϕ− di,j |, since for simplicity it
is assumed that the measurement at timet was performed in
the center of statei.

By construction the target states constitute a range of target-
sensor orientations for which the scattering physics is station-
ary. This is represented by definingp(o|sk,m), quantifying
the probability of observingo in statesk, given that sensorm
was deployed, wherem ∈ {1, 2, · · · , M} for M sensors. We
have assumed that the state decomposition is independent of
the sensor deployed. For the problem considered in Sec. III
this is a valid assumption, but it may require generalization
for disparate sensor types.

When performing sensing in the above setting the sensor
has the opportunity to choose among different actionsa,
where here an action corresponds to selecting a relative angle
∆ϕ ≥ 0 for movement of the platform, and deployment of one
of the M sensors for collection of scattering data (see Table
I). We may therefore define the probabilitiesp(sj |si, a) and
p(o|sk, a), which generalize the expressions introduced above.
In addition, we may introduce the probabilityπk to represent
the probability of being in statesk on the first observation. If
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TABLE I

SUMMARY OF THE POMDPACTIONS, STATES AND COSTS. THE SENSING COSTSc(m) AND CLASSIFICATION COSTSCuv MUST BE IN THE SAME UNITS.

WHEN A CLASSIFICATION DECISION IS MADE THE MODEL RANDOMLY TRANSITIONS TO A NEW TARGET AND ORIENTATION(RESET FORMULATION) OR

IT TRANSITIONS TO AN ABSORBING STATE(SEEFIG. 2), AND THEREFORE THE TERMINAL CLASSIFICATION STATESsuv ARE NOTIONAL.

Actions States Cost
Sensing Action:
• Move platform angle∆ϕ;
• Perform measurement with

one ofM sensors.

S = {s(n)
k ,∀ k, n}

Target statesk across all targets
n = {1, 2, · · · , N}.

c(m), m representing one of the
M possible sensors (independent
of target state visited).

Classification Action:
• Stop sensing, declare object

under test to be one member
from set{1, 2, · · · , N}.

suv , corresponding to declaring
target u when in reality targetv
is being sensed; bothu and v are
members of the set{1, 2, · · · , N}.

Cuv , for classification statesuv .
In terms of target statess in S,
c(s, a = u) = Cuv for all s
asociated with targetv.

each target orientation is uniformly likely, we may define

πk =
ϕk − ϕk−1

2π
(3)

B. Multi-target belief state

In the above discussion we have introduced the statis-
tical parameters needed to characterize a single target. In
general each target will have a distinct number of states
and a distinct state decomposition. We therefore employ the
notationp(s(n)

j |s(n)
i , a), p(o|s(n)

k , a) andπ
(n)
k to represent the

parameters for targetn; for example,s(n)
k represents thekth

state of targetn.
After performing a sequence ofT actions and makingT

observations (the first action only involves selecting a sensor
and making a measurement, with the original target-sensor
orientation uniformly distributed as above), we may compute
the belief state for any states ∈ S = {s(n)

k , ∀ k, n} as

bT (s|o1, · · · , oT , a1, · · · , aT ) = p(s|oT , aT , bT−1) (4)

where (4) reflects that the belief statebT−1 is a sufficient
statistic for {a1, · · · , aT−1, o1, · · · , oT−1} [6], [7]. Note that
the belief state is defined across the states from all targets,
and it may be computed via [7]

bT (s′)=
p(oT |s′, aT , bT−1)p(s′|aT , bT−1)

p(oT |aT , bT−1)

=
p(oT |s′, aT , bT−1)

∑
s p(s′|aT , bT−1, s)p(s|aT , bT−1)

p(oT |aT , bT−1)

=
p(oT |s′, aT )

∑
s p(s′|aT , s)bT−1(s)

p(oT |aT , bT−1)
(5)

where the denominatorp(oT |a, bT−1) may be viewed as a
normalization constant, independent ofs′, allowing bT (s′) to
sum to one.

After T actions and observations we may use (5) to compute
the probability that a given state, across allN targets, is being
observed. The belief state in (5) may also be used to compute
the probability that targetn is being interrogated, with the
result

p(n|o1, · · · , oT , a1, · · · , aT ) = p(n|bT ) =
∑

s∈Sn

bT (s) (6)

whereSn denotes the set of states associated with targetn.
Let Cuv denote the cost of declaring the object under

interrogation to be targetu, when in reality it is targetv, where
u and v are members of the set{1, 2, · · · , N}, defining the
N targets of interest. AfterT actions and observations, target
classification may be effected by minimizing the Bayes risk,
i.e., we declare the target

Target = arg min
u

∑N
v=1 Cuvp(v|bT )

= arg min
u

∑N
v=1 Cuv

∑
s∈Sv

bT (s) (7)

Therefore, a classification may be performed at any point in
the sensing process using the belief statebT (s).

As discussed in detail below, the POMDP sensing construc-
tion is designed to weigh the expected cost of performing
future sensing actions with the expected future reduction in
the Bayes risk. When the cost of sensing is not justified by the
expected reduction in risk, a classification decision is made,
using the belief state.

C. Bayes-risk POMDP formulation

In addition to the aforementioned sensing actions (selection
of the relative platform displacement∆ϕ and selection of
the sensor), we introduce a distinct set of terminal actions,
where here the action is defined by terminating sensing and
declaring that the target under interrogation comes from one
of the targetsn ∈ {1, 2, · · · , N}.

Costs are now defined for the sensing and classification
actions. The sensing actions are defined by the cost of
deploying the associated sensor and the cost of moving a
relative angle displacement∆ϕ. There are many ways this
cost may be defined, and further details are provided in Sec.
III when presenting example results. Note, however, that the
sensing cost is independent of which particular target state
is being interrogated, since our ultimate objective is target
classification; we do not have a goal of visiting particular target
states (which, in other settings, is a common objective of robot
navigation by using POMDPs [7], [9], [19]). With regard to
the terminal classification action, there areN2 terminal states
that may be visited. Terminal statesuv is defined by taking
the action of declaring that the object under interrogation is
targetu when in reality it is targetv; the cost of statesuv is
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Cuv, as defined in the context of the Bayes risk in (7). The
sensing costs and Bayes-risk costs must be in the same units.

Making the above discussion quantitative, letc(s, a) repre-
sent the immediate cost of performing actiona when in states.
For the sensing actions indicated abovec(s, a) is independent
of the target state being interrogated (independent ofs) and
is only dependent on the type of sensing action taken. For the
terminal classification action, defined by taking the action of
declaring targetu, we have

c(s, a = u) = Cuv,∀ s ∈ Sv (8)

The expected immediate cost of taking actiona in belief state
b(s) is

C(b, a) =
∑

s

b(s)c(s, a) (9)

For sensing actions, that have a cost independent tos, the
expected cost is simply the known cost of performing the mea-
surement. For the terminal classification action the expected
cost is

C(b, a = u) =
N∑

v=1

∑

s∈Sv

b(s)Cuv =
N∑

v=1

Cuvp(v|b) (10)

and therefore the optimal terminal action for a given belief
stateb is to choose that targetu that minimizes the Bayes risk.
Of interest, therefore, is to learn a policy that defines when
a belief stateb warrants taking such a terminal classification
action; when classification is not warranted, the desired policy
defines what sensing actions should be executed for the asso-
ciated belief stateb. The POMDP parameters are summarized
in Table I.

D. Non-myopic policy estimation

The goal of a policy is to minimize the expected discounted
infinite-horizon costE[

∑∞
k=0 γkC(bk, ak)], which yields Bell-

man’s dynamic programming recursion

χ(b) = min
a

[
C(b, a) + γ

∑

b′∈B
p(b′|b, a)χ(b′)

]
(11)

whereγ ∈ [0, 1) is a discount factor that quantifies the degree
to which future costs are discounted with respect to immediate
costs, andB defines the set of all possible belief states. In (11)
the actiona that minimizesχ(b) defines the optimal policy
(i.e., the mapping from belief states to actions,b → a). When
optimized exactly for a finite number of iterations, the cost
function is piecewise linear and concave in the belief space
[6], [7].

After t consecutive iterations of (11) we have

χt(b) = min
a

[
C(b, a) + γ

∑

b′∈B
p(b′|b, a)χt−1(b′)

]
(12)

whereχt(b) represents the cost of taking the optimal action
for belief stateb at t steps from the horizon. One may show
that χt(b) = minα∈Γt

∑
s∈S α(s)b(s), where theα-vectors

come from a setΓt = {α1, α2, · · · , αr}, where in generalr
is not knowna priori and is a function oft. Eachα-vector
defines an|S|-dimensional hyperplane, and each is associated

with an action, defining the best immediate policy assuming
optimal behavior for the followingt− 1 steps. The cost at
iteration t may be computed by “backing up” one step from
the solutiont−1 steps from the horizon [6], [7], [9]. Recalling
that χt−1(b) = minα∈Γt−1

∑
s∈S α(s)b(s), we have

χt(b) = min
a∈A

[
C(b, a) + γ

∑

o∈O
min

α∈Γt−1

∑

s∈S

∑

s′∈S
p(s′|s, a)

p(o|s′, a)α(s′)b(s)
]

(13)

where A represents the set of possible actions (both for
sensing and making classifications), andO represents the set of
possible observations. As discussed in Sec. III when presenting
results, the set of actions is discretized, as are the observations,
such that both constitute a finite set.

Iterative solution of (13) corresponds to sequential updating
of the set ofα-vectors, via a sequence of backup steps away
from the horizon. There has been much research directed
toward development of approximate techniques (e.g. [9], [19],
[20]) for solving (13), since exact solutions (e.g. [6], [7], [12])
are only possible for problems composed of a small number of
actions and states. The focus of this paper is on developing a
POMDP formulation for multi-aspect, multi-sensor target clas-
sification, not on the details of approximately solving (13). We
note, however, that in the results to follow we have utilized the
point-based value iteration (PBVI) algorithm [9], which has
demonstrated excellent policy design on complex benchmark
problems. As discussed in Sec. III, PBVI allows development
of good policies for problems of interest here (the examples
considered involve a relatively large number of actions and
observations, and a modest number of states). It is known that
PBVI has a time complexity ofO(|B||S||A||O||Γt−1| [9] for
the t-th iteration, where|V | denotes the size of a setV , and
|B| is the size of belief-point set that is used for approximated
planning.

E. Random reset vs. absorbing state

There are many ways in which one may formulate the
POMDP, two of which are indicated in Fig. 2. In one formu-
lation, after making a classification decision the underlying
model randomly selects another target (at a random target-
sensor orientation) and the sensing process proceeds. In the
other formulation after performing a classification the model
transitions into an absorbing state, and no further sensing
is performed. It is interesting to examine how these two
formulations differ.

One may view the sensing process as a sequence of ques-
tions asked of the unknown target by the sensor, with the
scattering physics providing the question answers. Specifically,
the sensor asks: “For this unknown target, what would the
scattered fields look like if I moved over there to perform
a measurement?”. To obtain the answer to this question the
sensor physically moves and performs the associated mea-
surement. The sensor recognizes that the ultimate objective
is to perform classification, and that a cost is assigned to each
question. The objective is therefore to ask the fewest number
of sensing questions, with the goal of minimizing the ultimate
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Fig. 2. Schematic of the POMDP formulation used in policy design,
for simple case of two targets. The sensing actions (top box) correspond
to sampling data from a sequence of target states. Actionsân correspond
to stopping sensing and declaring targetn. Depending on the formulation,
the classification action is followed by an absorbing state, or the algorithm
randomly resets on another target and target-sensor orientation (see Sec. II-E).

cost of the classification decision (accounting for the costs of
inaccurate classifications).

The reset formulation in Fig. 2 gives the sensor more
flexibility in optimally asking questions and performing clas-
sifications, within a cost budget. Specifically, the sensor may
discern that at give classification problem is very “hard” (i.e.,
prior to sensing it may be known that the object under test is
one of N targets, and after a sequence of measurements the
sensor may have winnowed this down to two possible targets;
however discerning between these final two targets may be a
significant challenge, requiring many sensing actions). Once
the complexity of the “problem” is understood, the optimal
thing to do within this formulation may be to stop asking ques-
tions and give the best classification answer possible, moving
on to the next (randomly selected) classification problem, with
the hope that it is “easier”. While the sensor may not do as
well in classifying the “hard” classification problems, overall
it may reduce costs.

By contrast, if the sensor transitions into an absorbing state
after performing classification (see Fig. 2), it cannot “opt out”
of a “hard” sensing problem, with the hope of being given an
“easier” problem subsequently. Therefore, with the absorbing-
state formulation we might expect that the sensor will on
average ask more questions (perform more sensing actions),
with the goal of reducing costs on the ultimate classification
task (which it cannot opt out of if it is “hard”).

The above characteristics of the two non-myopic POMDP
formulations are observed in Sec. III, when presenting results
on measured acoustic-scattering data. The appropriateness of
these formulations depends on the problem. The reset formula-
tion may be appropriate for scenarios in which there are many
targets to be classified and for which there is a finite sensing
budget. This formulation may lead to more errors on the “hard”
classification examples, but this may be counterbalanced by
the benefit of visiting and correctly classifying more targets
overall in a given amount of time.

F. Myopic alterative

The POMDP formulation discussed above yields a non-
myopic policy, mapping belief states into actions. It is of
interest to consider an alternative myopic approach, for com-
parison.

After T sensing actions and observations there is a belief
state bT (s), with which one may compute the Bayes risk
associated with making a classification decision, as defined
in (7). The expected Bayes risk after newsensingactionaT+1

may be computed as

RE(bT , aT+1) =
∑

o∈O
min

u

[ N∑
v=1

Cuv

∑

s′∈Sv

∑

s∈S
p(o|s′, aT+1)

p(s′|s, aT+1)bT (s)
]

(14)

One may compute the myopic cost associated with a sens-
ing action aT+1 as Ĉ(bT , aT+1) = c(aT+1) − [R(bT ) −
RE(bT , aT+1)], and actionaT+1 is selected as to minimizêC,

with R(bT ) = minu

[∑N
v=1 Cuv

∑
s∈Sv

bT (s)
]
. When Ĉ is

positive the costs of sensing exceed the expected reduction in
risk; the sensing is then terminated and a classification made.
For the results in Sec. III this myopic strategy is performed
exactly: for eachbT and aT+1 under consideration, (14) is
computed directly before selecting the next action (there is
not a policy learned “offline”, as in the non-myopic case).

III. E XAMPLE RESULTS

A. Targets and sensor considered

We consider the problem of classifying between five elastic
targets, based on underwater acoustic scattering data. This
problem is of importance for multi-aspect sensing and clas-
sification of underwater targets via an unmanned underwater
vehicle (UUV). Details on the targets, scattering data and
features are provided in [10], [21]. We here provide a brief
summary. The physical descriptions of the five targets are
provided in Fig. 3. The scattered fields are observed as a
function of angle, with data sampled in1◦ increments. The
time-domain scattered fields from each target are processed
using matching pursuits [10], [21], [22], from which a set
of features are extracted. The feature vectors are aggregated
across all target-sensor orientations and target types, and
vector quantization (VQ) is performed [23]. When performing
POMDP design and policy implementation, a feature vector
under test is mapped to one of the codes. Therefore, the
observationso are discrete elements from the associated VQ
codebook, andp(o|s(n)

k , a) is represented via a probability
mass function (pmf). The discount factor is set atγ = 0.95
for all POMDP results presented below.

Due to the target symmetry reflected in Fig. 3, the target
states are uniquely defined over a90◦ segment (see Fig.
4), with the remaining states at other angles manifested by
employing symmetry. For the acoustic frequencies considered,
we have found that each of the five targets is represented well
by five distinct states, as indicated schematically in Fig. 5;
the proper number of states may be computed using model-
selection techniques [24]. The target-dependent state-transition
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Fig. 3. Five elastic shell targets, with all units in meters. The scattered fields
are observed as a function of angle at a fixed distance from the target center,
in a plane bisecting the target axis. The nominal external sizes and shapes
of the targets are the same, with the acoustic scattering distinguished by the
internal structure.

probabilitiesp(s(n)
j |s(n)

i ,∆ϕ) and π
(n)
k initial-state probabil-

ities and may be computed using HMM training procedures,
such as the Baum-Welch and Viterbi algorithms [25], [26];
however, for the data considered here we have found that the
representations in (1) and (3) are effective (the change in these
parameters after training is minimal). We therefore assume that
training data are availablea priori for design of the model
parameters needed for the POMDP.

S1
S2

S4

S5

target

S3

Fig. 4. Example state decomposition for targets.

Concerning the scattering data, in Fig. 5 we plot the
magnitude of the measured scattered fields, for each of the five
targets, as a function of sensing angleϕ (over 360◦ of target-
sensor orientations). Note that the scattering data are relatively
similar across targets. We underscore that the classification is
not performed using all of the data in Fig. 5, but rather a
small number of angular samples from these data. The original
scattering data were measured over the frequency band 7.5–45
KHz. To simulate the use of multiple sensors, in the results
to follow four distinct “sensors” are manifested by filtering
the full frequency spectrum into four subbands using wavelets
(details below). While in principle all data may be collected,
stored and then processed subsequently, by employing a policy
to select from among the subbands there is savings in sensor
cost (time and energy for the data collection) and in storage
(computer memory). The basic idea also extends naturally to
other classes of sensors.

In the results to follow we keep the sensing costc(a)
to a constant,c(a) = Cs, for all sensing actions (subband
selection and choice of∆ϕ). The algorithm readily generalizes
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Fig. 5. Scattered fields (magnitude) as a function of sensing angle, for the
targets in Fig. 3. The vertical axis represents the frequency dependence of the
scattered fields, and the horizontal axis represents the sensor position relative
to the target (see Fig. 1)

if one wishes to makec(a) a function of ∆ϕ, for example
to favor less extensive angular displacements. One may also
makec(a) a function of the particular sensor considered (some
sensors may be more expensive to implement than others). For
example, in some applications passive sensors are preferred to
active sensors, since the latter reveal the sensing asset to the
target. The classification costsCuv are represented asCuv=Cc

for all u 6= v, and Cuu =−10 (a reward of 10 is obtained
upon correct classification). We consider compromises in the
classification performance vs. the number of sensor actions
by considering different choices ofCs and Cc (implicitly
changing the underlying policies).

B. Myopic and non-myopic sensing results, fullband data

We first present a comparison of three algorithms, using the
original full-band data: (i) a POMDP policy as computed via
PBVI [9], (ii) the greedy (myopic) algorithm in Sec. II-F with a
stopping criterion as defined in that section, and (iii) the greedy
algorithm with a fixed number of sensing actionsT prior to
making a classification. With regard to (i), two formulations
are considered, one based upon the reset after classification,
and the other employing an absorbing state after classification
(see Fig. 2 and Sec. II-E). Since the full spectrum of data are
used in these results, the only sensing action is selection of
the angular displacement∆ϕ. For these results the number of
VQ codes (possible observations) is 25, and the action space
is discretized in angular displacements of5◦, with a maximum
displacement of50◦.

Classification results are shown in Fig. 6(a) as a function
of the average number of actions employed before making
a classification decision. Each point for methods (i) and (ii)
corresponds to selecting costsCc. These costs range from
Cc = 15 for the smallest number of actions, andCc = 150
for the largest number of actions, withCs = 1. The results
for method (iii) are for integer number of actions, since the
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Fig. 6. (a) Classification performance of the four different formulations, as a function of the average number of actions; (b) Classification accuracy of the
two POMDP formulations and of the myopic (greedy) formulation with a stopping criterion, as a function of the cost of misclassification; (c) Average cost
per action, as a function of the misclassification costCc, for the example in Fig. 6(b).

number of actions in this case is fixed (not determined adap-
tively). The results in Fig. 6(a) are averaged across all possible
initializations of the target and target-sensor orientation under
consideration.

By comparing the two greedy (myopic) algorithms, one
using a stopping criterion and the other with a fixed number
of actions, we observe significantly improved performance of
the former. If the number of actions isT , the algorithm with
a fixed number of actions always performsT measurements
(each selected optimally, in a myopic sense). By contrast,
the algorithm with the stopping criterion takes anaverage
number of actionsT . For the “easy” classification decisions
the algorithm will often terminate sensing after less thanT
actions, and for the “harder” cases greater thanT actions
may be taken (T actions are only taken in an average sense).
Based upon the results in Fig. 6(a), this adaptive stopping is
important.

From Fig. 6(a) we observe that, for the same number of
average actions, the non-myopic POMDP with PBVI [9] yields
slightly better performance than the greedy algorithm with an
adaptive stopping criterion (using both non-myopic formula-
tions). As the probability of detection increases (increasing
Cc), there are an increasing number of average steps required
of the myopic algorithm with stopping criterion to achieve the
same classification performance as the non-myopic POMDP
formulations.

It is also of interest to compare the performance of the
two non-myopic POMDP formulations, based on a reset and
absorbing terminal state. As suggested in Sec. II-E, it appears
that for relatively low classification-error costs (smallCc),
when presented with a “hard” sensing problem the reset
POMDP formulation stops sensing early, makes the best
classification decision it can, and moves to the next target,
with the hope that its classification is “easier”. Therefore, for
small Cc, the reset formulation leads to fewer classification
actions and less-accurate classification than the absorbing-state
POMDP formulation. As the cost of classification error in-
creases (increasingCc), the two POMDP formulations become
more comparable, since there is a considerable cost associated
with opting out of “hard” classification problems and making
a less-accurate classification.

Figure 6(b) considers the same problem as Fig. 6(a), but
now the horizontal axis quantifiesCc rather than the number
of average actions. From Fig. 6(b) we observe a substantial
difference in the classification accuracy of the two POMDP
formulations for smallCc; while this appears to undermine
the utility of the reset formulation, note that Fig. 6(a) indicates
that this reduced classification performance has the attendant
property of fewer average actions (of importance for sensing
many targets with a finite sensing budget).

While the motivation for employing POMDPs is accurate
classification within a sensing budget, with this issue addressed
in Figs. 6(a) and 6(b), the POMDP is actually formulated to re-
duce costs (with classification performance coming indirectly,
parametrized by the cost of classification errorsCc and the
cost of correct and incorrect classification,Cuu andCuv, re-
spectively). In Fig. 6(c) we present the average cost per action
for the two POMDP formulations and for the myopic (greedy)
algorithm with a stopping criterion. Recall thatCuu = −10,
implying that negative average costs reflect that on average
correct classifications are being made at a rate that justifies
the sensing costsCs = 1. As Cc increases the advantages of
the non-myopic POMDP formulations become evidentvis-à-
vis the myopic approach with a stopping criterion. Also note
that for smallCc the POMDP with reset provides minimal
average cost per action (but higher classification errors), while
for largeCc the two POMDPs yield similar average costs per
action.

Another important distinction between the two POMDP
formulations is that the algorithm with absorbing terminal
state actually yields a finite-horizon algorithm, with horizon
length dictated by the complexity of the classification task
(defined by the target under interrogation and the initial target-
sensor orientation). For the absorbing-terminal-state POMDP
formulation one maynot wish to use discounting. When the
discount factor was set toγ = 1 (no discounting), we observed
little difference in the absorbing-state formulation performance
vis-à-vis the γ = 0.95 used in all other cases. This may be
attributed to the relatively small number of sensing actions
required to make a classification, for the problem considered.

All computer codes employed in this study were imple-
mented in unoptimized Matlab. However, to give a sense of the
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computational complexity, the offline POMDP policy design
required 3 hours of CPU with the PBVI algorithm [9], using
a Pentium IV with 2.8 GHz CPU. In these computations the
PBVI dealt with a total of 25 target states (and an absorbing
state, when that formulation was used), 15 possible actions,
and 25 possible observations. Selection of the actions when
sensing was essentially instantaneous, based on the policy. The
myopic algorithm required 0.02 seconds of CPU per action.

C. HMMs, myopic, non-myopic and subband selection

We now consider a case in which four different classes of
“sensors” are synthesized from the original fullband data in
Fig. 5. The POMDP results are here computed using the reset
formulation (see Sec. II-E and Fig. 2); the relative performance
of the reset and absorbing-state POMDP formulations are as
indicated in the previous subsection. The four subband data
come from the low-low, low-high, high-low, and high-high
(LL, LH, HL and HH, respectively) outputs of a wavelet trans-
form based on the Daubechies-4 wavelets [27]. We present
results for the original fullband data, for each of the subbands
considered separately, and when the adaptive algorithm selects
from among the four subbands. For cases in which the fullband
data are considered, the number of possible observations (VQ
codebook size) is 25, while when subband data are used a
total of 100 observations (codes) are possible.

We now compare three different algorithms: (i) the POMDP
of Sec. II with reset, (ii) a myopic adaptive strategy (Sec. II-F)
with a fixed stop criterion of four actions, and (iii) an HMM
in which the number of observations is fixed at five. Note that
the first observation is performed randomly (by selecting from
among the possible targets and the corresponding target-sensor
orientations); for the two adaptive algorithms all subsequent
measurements are performed adaptively. Therefore, for the
adaptive algorithms, whenT−1 actions are performed, there
are a total ofT observations.

For (i) and (ii) above we consider several examples of
adaptivity: (a) the full or subband sensor spectrum is fixed,
and adaptivity occurs in selection of the relative angle∆ϕ;
(b) the relative displacement is fixed at∆ϕ = 5◦ and the
adaptive algorithm can select from among the four subbands;
and (c) both the frequency subband and angular displacement
∆ϕ can be selected adaptively. For the POMDP the cost of
sensing and classification actions are fixed atCs = 1 and
Cc = 40.

The results of this study are presented in Table II. Con-
sidering first the example for which the subband is fixed, we
observe that best HMM results are manifested in the LL band;
this same level of relative performance among the frequency
subbands is also observed for the two classes of adaptive
algorithms. It is interesting to observe that for fixed angular
sampling∆ϕ = 5◦ there is substantial advantage found in
choosing the sensor bandwidth adaptively. Specifically, the
best HMM performance occurs with LL data (86.11% correct
classification), while the myopic and POMDP algorithms yield
respective correct classification of 90.72% and 94.72% by
adaptively selecting from the four subbands. Table II also
indicates that when the sensor bandwidth is fixed at LL, LH,

TABLE II

PROBABILITY OF CORRECT CLASSIFICATION FOR ANHMM ( FIVE

OBSERVATIONS, FIXED ACTIONS AND NO ADAPTIVITY ), THE POMDP,

AND A GREEDY ALGORITHM (SEC. II-F) WITH A FIXED NUMBER OF FOUR

ACTIONS (FIVE OBSERVATIONS). THE HMM RESULTS ARE SHOWN IN THE

MIDDLE COLUMN (WITH ONLY A SINGLE RESULT IN EACH CASE), FOR

FIXED 5◦ ANGULAR SAMPLING. WHERE TWO RESULTS ARE SHOWN

ACTIVE SENSING IS EMPLOYED, WITH THE RESULTS AT LEFT

CORRESPONDING TO MYOPIC SENSING WITH FOUR ACTIONS, AND THE

RESULTS AT RIGHT CORRESPONDING TO THEPOMDP (THE PARENTHESIS

DENOTE THE AVERAGE NUMBER OF ACTIONS FOR THE LATTER). THE LL,

HL, LH, AND HH DENOTE THE SUBBAND OUTPUTS FROM THE

DAUBECHIES-4 [27] WAVELET FILTER APPLIED TO THE FULLBAND DATA

(CORRESPONDING HERE TO FOUR DISTINCT“ SENSORS”). FOR THE

POMDP,THE COST OF PERFORMING A CLASSIFICATION ISCc =40,

WHILE THE COST OF SENSING ISCs =1.

Fixed Angular,5◦ Angle Selection
Fixed subband: LL 86.11% 91.94% – 91.33% (2.34)
Fixed subband: HL 72.67% 74.28% – 86.28% (5.08)
Fixed subband: LH 73.72% 80.72% – 91.22% (4.94)
Fixed subband: HH 77.72% 87.50% – 92.67% (3.89)
Fixed Fullband 76.50% 84.67% – 94.61% (4.08)
Subband Selection 90.72% – 94.72% (3.14) 93.50% – 97.17% (2.51)

HL, HH or fullband the adaptivity in angle provides substantial
gainsvis-à-vis the HMM with fixed angular sampling∆ϕ =
5◦.

The results in the bottom-right part of Table II reflect results
when both the relative angle and the sensor subband are se-
lected, either non-myopically via the POMDP or myopically as
discussed in Sec. II-F. In almost half the number of actions on
average, the POMDP manifests a relatively large improvement
in classification performancevis-à-vis the myopic approach
with four actions (five observations).

IV. CONCLUSIONS

A formulation has been presented for adaptive sensing
and classification of multiple targets, based on viewing the
distant or concealed object from a sequence of orientations.
In addition to selecting the relative platform position, the
algorithm allows adaptive selection from among a suite of
sensors. The partially observable Markov decision process
(POMDP) yields a policy, balancing the future costs of sensing
with the future expected reduction in the Bayes risk of making
a classification decision. In addition to determining a policy
for the optimal sensing actions, the policy defines when to
stop sensing and make a classification decision.

While the results reported here appear promising, there are
several directions for further work. For example, the POMDP
classification formulation assumes that models are available
for all targets that may be observed when sensing. Underlying
models were employed for each of the five targets considered
in this study. In many practical applications one may come
across targets that have not been seen previously. The ques-
tions that may be asked in this setting are: (i) is the target
under test one seen previously (for which a model exists);
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(ii) if so, which target is it; (iii) if not, which measurements
should be performed to learn more about the new target
(and possibly build a model for it)? This problem requires a
balance of exploration and exploitation, the former interested
in learning new information, the latter interested in utilizing
the existing information toward a desired end. This balance
has been investigated for related problems in reinforcement
learning, associated with Markov decision processes (MDPs)
[28]. In an MDP the underlying states are observable at all
times, and it is of interest to extend these ideas to POMDPs,
for which the underlying states are unobservable.
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