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Abstract—We consider the problem of sensing a concealed or Ny
distant target by interrogation from multiple sensors situated on Apr e O,
a single platform. The available actions that may be taken are | )
selection of the next relative target-platform orientation and the Y S
next sensor to be deployed. The target is modeled in terms of a S3 4

Platform

set of states, each state representing a contiguous set of target- o 03 Trajectory

sensor orientations over which the scattering physics is relatively S S,
stationary. The sequence of states sampled at multiple target- ...~ e

Agp
sensor orientations may be modeled as a Markov process. The VAR ® 0
sensor only has access to the scattered fields, without knowledge S5 LS 2
of the particular state being sampled, and therefore the problem S "=.\‘ S; . Ay
is modeled as apartially observableMarkov decision process 5
(POMDP). The POMDP yields a policy, in which the belief state 0,

at any point is mapped to a corresponding action. The non-
myopic policy is compared to an approximate myopic approach,
with example results presented for measured underwater acoustic
scattering data.

Fig. 1. Multi-aspect sensing of a concealed target. ktte statesy, is a
contiguous set of target-sensor orientations over which the scattered fields are
approximately stationaryi =8 states are shown). HefE observations are

Index Terms—Multi-aspect sensing, partially observable Performed.{oi,oz,---,or}, as performed at a sequencerefative sensor
Markov decision processes (POMDPs), hidden Markov models 2"9Ular positions, wheréps. 1 = @141 — ¢ are orientations.
(HMMs), non-myopic algorithms.

inherently samples different target states. For most problems of
interest the target is either distant or concealed, and therefore
He integration of sensing and processing is of increaghe underlying states are “hidden”. The sensor does have
ing importance for many applications, including newaccess to the associated scattered fields, thereby motivating
unmanned sensing platforms that have the capacity to adaptHMM representation. In the HMM formulation the sensing
to their environment [1]. The problem may be posed as ometions are assumed fixed (e.g., a constant relative change
of sensor management. Specifically, given particular sengortarget-sensor orientation), and therefore there is limited
assets and previously collected data, one may ask which dagportunity for adaptive sensing. In this paper we extend the
should be collected next to best advance a sensing missigiMM formalism to a POMDP, yielding a natural and flexible
Techniques that have been applied to this problem includdaptive-sensing framework.
ideas from the theory of optimal experiments [2], wherein We assume access to a single platform that may carry
one may be interested in minimizing the uncertainty (entropyultiple sensors. The objective is to classify the target under
of parameters estimated within an inversion [3]-[5]. Most dfterrogation based upon multi-aspect sensing data. There are
these previous studies have been myopic [2]-[5], in that theéyree questions that may be asked, based on previous obser-
seek to perform the next measurement that is most informativations and on underlying models of the targets of interest: (i)
for example in terms of a measure of entropy [2], withouthich relative target-platform orientation should be considered
considering how the measurement may affect those that conext, (i) which sensor should be deployed next, and (iii) when
subsequently. should the sensing be terminated and a classification decision
Partially observable Markov decision processes (POMDRgjade?
[6]-[9] are well suited to non-myopic sensing problems, when |t is assumed that a model is available for all targets that may
the underlying physics supports a Markov representation.blé interrogated, and the objective is to perform classification
has been demonstrated previously, with fixed sensor actioftae model is designed assuming access to training data,
that sensing a target from multiple target-sensor orientatioasd HMM learning algorithms are employed [10]). For this
may be modeled via a hidden Markov model (HMM) [10]classification task the POMDP is here formulated in terms of
Each state of the HMM corresponds to a contiguous set Bhyes risk [11], withC,,, representing the cost of declaring
target-sensor orientations for which the scattering physicstéggetu when actually the target under interrogation is target
relatively stationary (see Fig. 1). When the sensor interrogatesUsing the same units as associated wdth,, we also
a given target from a sequence of target-sensor orientationsidtine a cost for each class of sensing action. After a set
) ) ) ) of sensing actions and observations the sensor may utilize
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yields a non-myopic policy for the optimal sensor action givebeing interrogated at a given time is “hidden”, because the
the belief state, where here the sensor actions correspondatget is distant or concealed. It is assumed that, on consecutive
defining the next relative target-sensor orientation and the nex¢asurements, the probability of transitioning from any given
sensor to deploy. In addition, the POMDP gives a policy fastate to another state may be modeled as a Markov process.
when the belief state indicates sensing should be terminafidte corresponding state-transition probabilities are modeled
and a classification decision made. The latter is implicitlgs follows. Letd; ; represent the shortest angular distance
manifested when the expected future reduction in Bayes rigktravel in a prescribed direction, i.e. clockwise or counter-
is not justified by the expected future cost in sensing actiordockwise, from the center of statg to the center of state
A summary of actions, states and costs is provided in Tablesl. Further, assume thatp >0 represents the change in
Learning a non-myopic policy may be computationallyhe relative angular position on consecutive measurements,
expensive [6], [7], [12]; however, this is an offline calculatioperformed in the same angular direction as used to défine
based on the underlying target models. Once the policy HBEise probability of transitioning from state; to states; on
been so learned, the actual sensing may be performed in nEmrsecutive measurements separated\byis defined as
real time, limited only by the time required to compute the

belief state [7] and then map this into the corresponding (pre- (35151, Ag) = ;(”j(divj — Ay) 1)
optimized) sensor action. Zj:l w;j(dij — Ap)

The related technique of multi-armed bandits [13], [14 here
has been considered for similar sensing problems. POMDPSs 1 9
have also been applied to the problem of multi-sensor target wi(p) = exp <902> 2)
tracking [8]. The general problem of employing POMDPs for 27r0j2- 20}

multi-sensor classification of multiple targets is discussed in
[15], [16], applied to large problems but with simplified targewith o; = (¢; — ¢,-1)/2. To simplify the above analysis we
models. Krishnamurthy and colleagues [17], [18] have also reave assumed that the sensor always moves in a fixed direction
cently employed POMDPs for several other sensing problenfelockwise or counter-clockwise). However, in practice the
Our application of the POMDP framework to the problenactual direction of sensor motion may be dictated by which
of underwater acoustic scatter from five elastic targets is, path is shortest, e.g. it is easier to mdfecounter clockwise
our knowledge, the first successful application of POMDRban clockwise355°.
to a problem of this scale using actual, measured scatteringconsidering (1) and (2) in greater detail, we note that
data. This work has significant utility in the context of sensinthe likelihood of transitioning from staté to state j, is
underwater targets via sensors deployed on unmanned undegximized whenAy = d; ;, corresponding to transitioning
water vehicles (UUVS). an angular distance commensurate with the distance between
The remainder of the paper is organized as follows. In Sahe centers of these two states. Assume now that measurement
Il we introduce the POMDP formulation for multi-aspectt is performed in staté and that the next measurement at time
multi-sensor interrogation of a concealed or distant target-1 is performed at an angular displaceménp # d; ;. As
The non-myopic formulation is compared to an approximaté\y —d; ;| increases, the likelihood of transitioning from state
myopic framework. In Sec. lll we present example resulisto statej diminishes, as defined in (1) and (2). The rate of
for acoustic sensing of underwater elastic targets, basedwanich this likelihood diminishes is dictated by the angular
measured scattering data, with comparisons between myogitent of statej relative to|Ay — d; ;|, since for simplicity it
and non-myopic strategies. Conclusions are provided in Secassumed that the measurement at tinveas performed in
V. the center of state.
By construction the target states constitute a range of target-
Il. POMDP FORMULATION sensor orientations for which the scattering physics is station-
A. Markov model of target sensing ary. This is represented by definingo|s;, m), quantifying
The scattering physics from a complex target is typically the probability of observing in states, given that sensom
strong function of the target-sensor orientation [10]. Howevexas deployed, where: € {1,2,--- , M} for M sensors. We
there are generally contiguous ranges of target-sensor orieffitave assumed that the state decomposition is independent of
tions for which the scattering physics is relatively stationarfhe sensor deployed. For the problem considered in Sec. Il
Each such set of angles is termed a state [10]. To simplil§is is a valid assumption, but it may require generalization
notation we assume that the targets of interest are rotationdfly disparate sensor types.
symmetric, and the scattered fields are observed in a plan&Vhen performing sensing in the above setting the sensor
bisecting the axis of symmetry (see Fig. 1). Consequently, ks the opportunity to choose among different actians
a fixed radial distance from the target center the scatteredvhere here an action corresponds to selecting a relative angle
fields are characterized by a single angle For a target Ay > 0 for movement of the platform, and deployment of one
with K states, the states are defined by the set of anglafsthe M sensors for collection of scattering data (see Table
{¢0,¢1, -+ , K}, with the kth state corresponding to thel). We may therefore define the probabilitigés;|s;,a) and
contiguous range of angles € [pr_1, ¥k p(o|sk, a), which generalize the expressions introduced above.
Assume a sequence of measurements is performed, dhaddition, we may introduce the probability. to represent
sequence of target-sensor orientations. The particular stdte probability of being in state, on the first observation. If



TABLE |
SUMMARY OF THE POMDPACTIONS, STATES AND COSTS THE SENSING COSTS:(m) AND CLASSIFICATION COSTSCy, MUST BE IN THE SAME UNITS.
WHEN A CLASSIFICATION DECISION IS MADE THE MODEL RANDOMLY TRANSITIONS TO A NEW TARGET AND ORIENTATION(RESET FORMULATION) OR
IT TRANSITIONS TO AN ABSORBING STATE(SEEFIG. 2), AND THEREFORE THE TERMINAL CLASSIFICATION STATESS,, ARE NOTIONAL.

Actions States Cost
Sensing Action:
« Move platform angleAy; S= {S,(JL),V k,n} ¢(m), m representing one of the
« Perform measurement with Target statest across all targety M possible sensors (independent
one of M sensors. n={1,2,---,N}. of target state visited).

Classification Action:
« Stop sensing, declare obje¢t Suv. corresponding to declaring Cy.,, for classification states,,.
under test to be one membertargetuw when in reality targetv | In terms of target states in S,
from set{1,2,--- ,N}. is being sensed; both andv are | c¢(s,a = u) = Cy, for all s
members of the s€tl,2,--- , N}. | asociated with target.

each target orientation is uniformly likely, we may define whereS,, denotes the set of states associated with taiget
_ Let C,, denote the cost of declaring the object under
Pk — Pk—1 . : . L2
Tk =" (3) interrogation to be target, when in reality it is target, where
u andv are members of the sétl,2,--- , N}, defining the
N targets of interest. Aftef” actions and observations, target

) ) _ classification may be effected by minimizing the Bayes risk,
In the above discussion we have introduced the statiss., we declare the target

tical parameters needed to characterize a single target. In ) N

general each target will have a distinct number of states ~ 1arget = argmin}_,_, Cuup(vbr)

n istin mposition. We therefore empl h .

and a distinct state decompositio e therefore employ the = argmin Zivzl Cuv Yoses, br(s) @)

notationp(s§")|s§")7 a), p(o]s\™,a) and7\"™ to represent the
parameters for target; for example,s,(cn) represents théth Therefore, a classification may be performed at any point in
state of target. the sensing process using the belief statés).

After performing a sequence af actions and makind" As discussed in detail belOW, the POMDP sensing construc-
observations (the first action only involves selecting a send#n is designed to weigh the expected cost of performing
and making a measurement, with the original target-sendgfure sensing actions with the expected future reduction in
orientation uniformly distributed as above), we may computBe Bayes risk. When the cost of sensing is not justified by the
the belief state for any statec S = {si"),v k,n} as expected reduction in risk, a classification decision is made,

using the belief state.

B. Multi-target belief state

bT(S‘Ol, cer,07,A1, 0 0 ,aT) = p(S‘OT, aTbe—l) (4)
where (4) reflects that the belief statg_; is a sufficient C- Bayes-risk POMDP formulation
statistic for{ay, - ,ar1,01, -+ o1} [6], [7]. Note that In addition to the aforementioned sensing actions (selection
the belief state is defined across the states from all targeib,the relative platform displacemenky and selection of
and it may be computed via [7] the sensor), we introduce a distinct set of terminal actions,
(07|, ar, b1 )p(s'|az, brs) Where_ here the action is define_d by terminating sensing and
by (s')=LR0L12 AT, OT-1)PAS [AT, D1 declaring that the target under interrogation comes from one
) plorlar,br-1) ) of the targets: € {1,2,--- ,N}.
_plor|s’sar,bra) 3o, p(s'lar, b, s)p(slar, br) Costs are now defined for the sensing and classification
plorlar,br) actions. The sensing actions are defined by the cost of
_plorls’,ar) Y-, p(s'lar, s)br1(s) 5) deploying the associated sensor and the cost of moving a

relative angle displacemenky. There are many ways this
cost may be defined, and further details are provided in Sec.
[l when presenting example results. Note, however, that the

sensing cost is independent of which particular target state
sum to one.

After T actions and observations we may use (5) to compuif being interrogated, since our ultimate objective is target
the probability that a given state, across/slitargets, is being cFaSS|f|cat|_on; we do not h"’Tve a goal of visiting pgrthular target
observed. The belief state in (5), may also be usea to compﬁ%‘é‘t.es (.Wh'Ch’ n pther settings, Is a common obj_ect|ve of robot
the probébility that target is being interrogated, with the nawgatpn by using P.OMDP.S [71, [3], [19)). W't.h regard to
result ' the terminal classification action, there avé terminal states

that may be visited. Terminal statg,, is defined by taking
p(nloy,--- ,or,a1,--- ,ar) = p(n|br) = Z br(s) (6) the action of declaring that the object under interrogation is
forel targetu when in reality it is targev; the cost of state,,, is

p(or|ar, br)

where the denominatop(or|a,br—1) may be viewed as a
normalization constant, independent«f allowing br(s’) to



Cuv, as defined in the context of the Bayes risk in (7). Theith an action, defining the best immediate policy assuming

sensing costs and Bayes-risk costs must be in the same umigimal behavior for the following — 1 steps. The cost at
Making the above discussion quantitative, dét, a) repre- iterationt may be computed by “backing up” one step from

sent the immediate cost of performing actiowhen in states.  the solutiont—1 steps from the horizon [6], [7], [9]. Recalling

For the sensing actions indicated abeye, a) is independent that x; 1(b) = minaer, , Y s @(s)b(s), we have

of the target state being interrogated (independent)aind

is only dependent on the type of sensing action taken. For the v, (b) = 322 [C(b, a) +v Z min Z Z s'ls, a)

terminal classification action, defined by taking the action of 0¥ gs s
declaring target;, we have
9targ p<o|s/,a>a<s'>b<s>] 13)
c(s,a=u) =Cyy,V s €S, (8)
The expected immediate cost of taking actiom belief state where A represents the set of possible actions (both for

sensing and making classifications), @depresents the set of
possible observations. As discussed in Sec. Il when presenting
Z b ©) results, the set of actions is discretized, as are the observations,
such that both constitute a finite set.
For sensing actions, that have a cost independent, ihe jterative solution of (13) corresponds to sequential updating
expected cost is simply the known cost of performing the megt the set ofa-vectors, via a sequence of backup steps away
surement. For the terminal classification action the expectggdm the horizon. There has been much research directed
cost s toward development of approximate techniques (e.g. [9], [19],
[20]) for solving (13), since exact solutions (e.qg. [6], [7], [12])
=> ") b(s)Cus =Y _ Cuwp(vlb)  (10) are only possible for problems composed of a small number of
v=1s€S, v=1 actions and states. The focus of this paper is on developing a
and therefore the optimal terminal action for a given belid@OMDP formulation for multi-aspect, multi-sensor target clas-
stateb is to choose that targetthat minimizes the Bayes risk. Sification, not on the details of approximately solving (13). We
Of interest, therefore, is to learn a policy that defines wheote, however, that in the results to follow we have utilized the
a belief stateh warrants taking such a terminal classificatiooint-based value iteration (PBVI) algorithm [9], which has
action; when classification is not warranted, the desired poliggmonstrated excellent policy design on complex benchmark
defines what sensing actions should be executed for the agg@blems. As discussed in Sec. Ill, PBVI allows development
ciated belief staté. The POMDP parameters are summarized good policies for problems of interest here (the examples
in Table 1. considered involve a relatively large number of actions and
observations, and a modest number of states). It is known that
PBVI has a time complexity o (|B||S||A||O||T". [9] for
the ¢-th iteration, wherdV| denotes the size of a sét, and
ﬁ | is the size of belief-point set that is used for approximated
planning.

b(s) is

D. Non-myopic policy estimation

The goal of a policy is to minimize the expected discount
infinite-horizon cosE[>" 2, v*C bk, ax)], which yields Bell-
man’s dynamic programming recursion

E. Random reset vs. absorbing state

There are many ways in which one may formulate the

h 0.1) is a di t factor that tifies the d POMDP, two of which are indicated in Fig. 2. In one formu-
wherey € 0,1)is a Iscount factor that quantilies the egr_elecltion, after making a classification decision the underlying
to which future costs are discounted with respect to |mmed|%e

x(b) = min | C(b, a) + > pv'|p, a)x(b')] (11)

b'eB

. ) ' odel randomly selects another target (at a random target-
costs, ands defines the set of all possible belief states. In (1 4 get ( g

. o . X . ensor orientation) and the sensing process proceeds. In the
the actiona that minimizesy(b) defines the optimal policy ) gp P

e th na f belief states t tioh Wh other formulation after performing a classification the model
(i.e., the mapping from belief states to actiohs a). €N ransitions into an absorbing state, and no further sensing

optimized exactly for a finite number of iterations, the co L performed. It is interesting to examine how these two
function is piecewise linear and concave in the belief spage " -+ 0c diﬁer

[6]. [7]. o . One may view the sensing process as a sequence of ques-
After ¢ consecutive iterations of (11) we have tions asked of the unknown target by the sensor, with the
) , , scattering physics providing the question answers. Specifically,
xi(b) = min C(b,a) +~ Z p(V'[b, a)xe—1 (V') (12)  the sensor asks: “For this unknown target, what would the
b’eB scattered fields look like if | moved over there to perform
where x:(b) represents the cost of taking the optimal actioa measurement?”. To obtain the answer to this question the
for belief stateb at ¢t steps from the horizon. One may showsensor physically moves and performs the associated mea-
that x:(b) = minger, ) ,c5(s)b(s), where thea-vectors surement. The sensor recognizes that the ultimate objective
come from a sel’; = {«a;,a9, -+, ..}, where in generat is to perform classification, and that a cost is assigned to each
is not knowna priori and is a function oft. Eacha-vector question. The objective is therefore to ask the fewest number
defines ar|.S|-dimensional hyperplane, and each is associatefisensing questions, with the goal of minimizing the ultimate



/x\ m F. Myopic alterative
NI NN

. 5SS S o ) Thg POMDP formylanon _dlscussed_above _ylelds a non-
_Reset R DI (XA myopic policy, mapping belief states into actions. It is of
\w \w interest to consider an alternative myopic approach, for com-
Target 1 Target 2 pari son.

Sensing cost e, for sensor m After T sensing actions and observations there is a belief
state by (s), with which one may compute the Bayes risk
%/\a\ associated with making a classification decision, as defined
N Adu:"y o in (7). The expected Bayes risk after neensingactiona
may be computed as
Cp, Cy Cypy

Classification costs: €, N
! e Btz ar) = Y nin|Y " Cuu 3 S plol, o)
v=1

0O s'€S, s€S

Fig. 2. Schematic of the POMDP formulation used in policy design, P(SI\S,GT+1)Z7T(S) (14)
for simple case of two targets. The sensing actions (top box) correspond

to sampling data from a sequence of target states. Actighsorrespond . . .
to stopping sensing and declaring targetDepending on the formulation, ON€ may compute the myopic cost associated with a sens-
the classification action is followed by an absorbing state, or the algorithimg action ar; as C'(br,ary) = clapn) — [R(br) —

randomly resets on another target and target-sensor orientation (see Sec. II]# '(bT CLT+1)] and actioruT+1 is selected as to minimiz€
with R(br) = min, [0, Cuw e, br(s)]- When C is
positive the costs of sensing exceed the expected reduction in
cost of the classification decision (accounting for the costs gék; the sensing is then terminated and a classification made.
inaccurate classifications). For the results in Sec. Il this myopic strategy is performed

The reset formulation in Fig. 2 gives the sensor moxactly: for eachbr and ary, under consideration, (14) is
flexibility in optimally asking questions and performing clascomputed directly before selecting the next action (there is
sifications, within a cost budget. Specifically, the sensor m&pt a policy learned “offline”, as in the non-myopic case).
discern that at give classification problem is very “hard” (i.e.,
prior to sensing it may be known that the object under test is [1l. EXAMPLE RESULTS
one of V targets, and after a sequence of measurements gleTargets and sensor considered
sensor may have winnowed this down to two possible targets; . . , .

; ; . We consider the problem of classifying between five elastic

however discerning between these final two targets may b? a ) : .
o - ) : argets, based on underwater acoustic scattering data. This
significant challenge, requiring many sensing actions). Once . . . .
: b - : roblem is of importance for multi-aspect sensing and clas-

the complexity of the “problem” is understood, the optimal... .

) R . . sification of underwater targets via an unmanned underwater
thing to do within this formulation may be to stop asking ques-

tions and give the best classification answer possible, moviVethIe (ULV). Details on the targets, scattering data and

on to the next (randomly selected) classification problem, Wifﬁ%tures are prowdeq in [10], .[21]' We here prowde a brief
summary. The physical descriptions of the five targets are

the hope that it is “easier”. While the sensor may not do as

. . ) ” e rovided in Fig. 3. The scattered fields are observed as a
well in classifying the “hard” classification problems, overal . : o
. unction of angle, with data sampled if increments. The
it may reduce costs.

time-domain scattered fields from each target are processed
By contrast, if the sensor transitions into an absorbing stalging matching pursuits [10], [21], [22], from which a set
after performing classification (see Fig. 2), it cannot “opt ousf features are extracted. The feature vectors are aggregated
of a *hard” sensing problem, with the hope of being given agcross all target-sensor orientations and target types, and
“easier” problem subsequently. Therefore, with the absorbingsctor guantization (VQ) is performed [23]. When performing
state formulation we might expect that the sensor will 0BOMDP design and policy implementation, a feature vector
average ask more questions (perform more sensing actiopflder test is mapped to one of the codes. Therefore, the
with the goal of reducing costs on the ultimate classificatiqfhservations) are discrete elements from the associated VQ
task (which it cannot opt out of if it is “hard”). codebook, andp(o|s\"”,a) is represented via a probability
The above characteristics of the two non-myopic POMD#Mass function (pmf). The discount factor is setyat 0.95
formulations are observed in Sec. Ill, when presenting resufts all POMDP results presented below.
on measured acoustic-scattering data. The appropriateness @fue to the target symmetry reflected in Fig. 3, the target
these formulations depends on the problem. The reset formudtates are uniquely defined over98° segment (see Fig.
tion may be appropriate for scenarios in which there are ma#y, with the remaining states at other angles manifested by
targets to be classified and for which there is a finite sensiegiploying symmetry. For the acoustic frequencies considered,
budget. This formulation may lead to more errors on the “haraie have found that each of the five targets is represented well
classification examples, but this may be counterbalanced by five distinct states, as indicated schematically in Fig. 5;
the benefit of visiting and correctly classifying more targethe proper number of states may be computed using model-
overall in a given amount of time. selection techniques [24]. The target-dependent state-transition
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Fig. 5. Scattered fields (magnitude) as a function of sensing angle, for the
targets in Fig. 3. The vertical axis represents the frequency dependence of the
scattered fields, and the horizontal axis represents the sensor position relative

probabilitieSp(s§")|s§"),A<p) and w,i") initial-state probabil- to the target (see Fig. 1)

ities and may be computed using HMM training procedures,

such as the Baum-Welch and Viterbi algorithms [25], [26];

however, for the data considered here we have found that th@ne wishes to make(a) a function of Ay, for example
representations in (1) and (3) are effective (the change in thé@gavor less extensive angular displacements. One may also
parameters after training is minimal). We therefore assume tiagkec(a) a function of the particular sensor considered (some
training data are availabla priori for design of the model Sensors may be more expensive to implement than others). For
parameters needed for the POMDP. example, in some applications passive sensors are preferred to
active sensors, since the latter reveal the sensing asset to the
target. The classification costy,, are represented &3,,=C.

for all v # v, and C,, =—10 (a reward of 10 is obtained
upon correct classification). We consider compromises in the
classification performance vs. the number of sensor actions
by considering different choices af’s and C. (implicitly
changing the underlying policies).

Fig. 4. Example state decomposition for targets. B. Myopic and non-myopic sensing results, fullband data

We first present a comparison of three algorithms, using the

Concerning the scattering data, in Fig. 5 we plot theriginal full-band data: (i) a POMDP policy as computed via
magnitude of the measured scattered fields, for each of the iRBVI [9], (ii) the greedy (myopic) algorithm in Sec. lI-F with a
targets, as a function of sensing angléover 360° of target- stopping criterion as defined in that section, and (iii) the greedy
sensor orientations). Note that the scattering data are relativelgorithm with a fixed number of sensing actiofisprior to
similar across targets. We underscore that the classificationriaking a classification. With regard to (i), two formulations
not performed using all of the data in Fig. 5, but rather are considered, one based upon the reset after classification,
small number of angular samples from these data. The origiaid the other employing an absorbing state after classification
scattering data were measured over the frequency band 7.5(ste Fig. 2 and Sec. II-E). Since the full spectrum of data are
KHz. To simulate the use of multiple sensors, in the resultsed in these results, the only sensing action is selection of
to follow four distinct “sensors” are manifested by filteringhe angular displacemerty. For these results the number of
the full frequency spectrum into four subbands using waveleéf) codes (possible observations) is 25, and the action space
(details below). While in principle all data may be collecteds discretized in angular displacementsséf with a maximum
stored and then processed subsequently, by employing a poticsplacement of0°.
to select from among the subbands there is savings in sensdClassification results are shown in Fig. 6(a) as a function
cost (time and energy for the data collection) and in storagé the average number of actions employed before making
(computer memory). The basic idea also extends naturallydcclassification decision. Each point for methods (i) and (ii)
other classes of sensors. corresponds to selecting cost&. These costs range from

In the results to follow we keep the sensing ce$t) C. = 15 for the smallest number of actions, a6l = 150
to a constantc(a) = C, for all sensing actions (subbandfor the largest number of actions, with; = 1. The results
selection and choice aky). The algorithm readily generalizesfor method (iii) are for integer number of actions, since the
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Fig. 6. (a) Classification performance of the four different formulations, as a function of the average number of actions; (b) Classification accuracy of the
two POMDP formulations and of the myopic (greedy) formulation with a stopping criterion, as a function of the cost of misclassification; (c) Average cost
per action, as a function of the misclassification a0st for the example in Fig. 6(b).

number of actions in this case is fixed (not determined adap-Figure 6(b) considers the same problem as Fig. 6(a), but
tively). The results in Fig. 6(a) are averaged across all possilolew the horizontal axis quantifies, rather than the number
initializations of the target and target-sensor orientation undefr average actions. From Fig. 6(b) we observe a substantial
consideration. difference in the classification accuracy of the two POMDP
By comparing the two greedy (myopic) algorithms, onéormulations for smallC.; while this appears to undermine
using a stopping criterion and the other with a fixed numbéhe utility of the reset formulation, note that Fig. 6(a) indicates
of actions, we observe significantly improved performance tiat this reduced classification performance has the attendant
the former. If the number of actions i, the algorithm with property of fewer average actions (of importance for sensing
a fixed number of actions always perforrfismeasurements many targets with a finite sensing budget).
(each selected optimally, in a myopic sense). By contrast,While the motivation for employing POMDPSs is accurate
the algorithm with the stopping criterion takes amerage classification within a sensing budget, with this issue addressed
number of actionsl’. For the “easy” classification decisionsin Figs. 6(a) and 6(b), the POMDP is actually formulated to re-
the algorithm will often terminate sensing after less tan duce costs (with classification performance coming indirectly,
actions, and for the “harder” cases greater tlfaractions parametrized by the cost of classification erréfs and the
may be taken{’ actions are only taken in an average sensejost of correct and incorrect classificatiatt,,, and C,,,, re-
Based upon the results in Fig. 6(a), this adaptive stoppingsigectively). In Fig. 6(c) we present the average cost per action
important. for the two POMDP formulations and for the myopic (greedy)
From Fig. 6(a) we observe that, for the same number afgorithm with a stopping criterion. Recall thét,, = —10,
average actions, the non-myopic POMDP with PBVI [9] yieldgnplying that negative average costs reflect that on average
slightly better performance than the greedy algorithm with aorrect classifications are being made at a rate that justifies
adaptive stopping criterion (using both non-myopic formuldhe sensing cost€’s = 1. As C. increases the advantages of
tions). As the probability of detection increases (increasirije non-myopic POMDP formulations become evideista-
C.), there are an increasing number of average steps requivésithe myopic approach with a stopping criterion. Also note
of the myopic algorithm with stopping criterion to achieve th¢hat for smallC,. the POMDP with reset provides minimal
same classification performance as the non-myopic POMBRerage cost per action (but higher classification errors), while
formulations. for large C.. the two POMDPs yield similar average costs per
It is also of interest to compare the performance of th&ction.
two non-myopic POMDP formulations, based on a reset andAnother important distinction between the two POMDP
absorbing terminal state. As suggested in Sec. II-E, it appefggmulations is that the algorithm with absorbing terminal
that for relatively low classification-error costs (small.), state actually yields a finite-horizon algorithm, with horizon
when presented with a “hard” sensing problem the redength dictated by the complexity of the classification task
POMDP formulation stops sensing early, makes the bdgefined by the target under interrogation and the initial target-
classification decision it can, and moves to the next targegnsor orientation). For the absorbing-terminal-state POMDP
with the hope that its classification is “easier”. Therefore, fdormulation one maynot wish to use discounting. When the
small C., the reset formulation leads to fewer classificatiodiscount factor was set tp= 1 (no discounting), we observed
actions and less-accurate classification than the absorbing-slitite difference in the absorbing-state formulation performance
POMDP formulation. As the cost of classification error invis-a-vis the v = 0.95 used in all other cases. This may be
creases (increasing,), the two POMDP formulations becomeattributed to the relatively small number of sensing actions
more comparable, since there is a considerable cost associggeghired to make a classification, for the problem considered.
with opting out of “hard” classification problems and making All computer codes employed in this study were imple-
a less-accurate classification. mented in unoptimized Matlab. However, to give a sense of the



. . : : : TABLE I
computational complexity, the offline POMDP policy design

) . : . P HMM
fquired 3 hours of CPU wih the PBVI lgortm (3, using 7o%/er 7 07T S5 o e (1
a Pentium IV with 2.8 GHz CPU. In these computations the ‘ '

AND A GREEDY ALGORITHM (SEC. II-F) WITH A FIXED NUMBER OF FOUR

PBVI dealt with a total of 25 target states (and an absorbin%
ACTIONS (FIVE OBSERVATIONS). THE HMM RESULTS ARE SHOWN IN THE

state, when that formulation was used), 15 possible actions,
. . . . MIDDLE COLUMN (WITH ONLY A SINGLE RESULT IN EACH CASE), FOR
and 25 possible observations. Selection of the actions when .
. . . . FIXED 5° ANGULAR SAMPLING. WHERE TWO RESULTS ARE SHOWN
sensing was essentially instantaneous, based on the policy. The
ACTIVE SENSING IS EMPLOYEDQ WITH THE RESULTS AT LEFT

myopic algorithm required 0.02 seconds of CPU per action.
CORRESPONDING TO MYOPIC SENSING WITH FOUR ACTION®AND THE

RESULTS AT RIGHT CORRESPONDING TO THPOMDP (THE PARENTHESIS
C. HMMs, myopic, non-myopic and subband selection DENOTE THE AVERAGE NUMBER OF ACTIONS FOR THE LATTER THE LL,

. . . . HL, LH, AND HH DENOTE THE SUBBAND OUTPUTS FROM THE
We now consider a case in which four different classes 05 4[27]
“ ” . P . DAUBECHIES- WAVELET FILTER APPLIED TO THE FULLBAND DATA
sensors” are synthesized from the original fullband data in ( . o F
. . CORRESPONDING HERE TO FOUR DISTINCTSENSORS). FOR THE
Fig. 5. The POMDP results are here computed using the reset
. . . . POMDP,THE COST OF PERFORMING A CLASSIFICATION 1€, =40,
formulation (see Sec. lI-E and Fig. 2); the relative performance
of the reset and absorbing-state POMDP formulations are as
indicated in the previous subsection. The four subband data
come from the low-low, low-high, high-low, and high-high

WHILE THE COST OF SENSING IS0 =1.

. Fixed Angular,5° Angle Selection
(LL, LH, HL and HH, respectively) outputs of a wavelet trans—- g subband LL86.11% 91.94% — 91.33% (2.34)
form based on the Daubechies-4 wavelets [27]. We presefrixed subband: HL ~ 72.67% 74.28% — 86.28% (5.08)
results for the original fullband data, for each of the subband§&ixed subband: LH  73.72% 80.72% — 91.22% (4.94)
. ; . Fixed subband: HH  77.72% 87.50% — 92.67% (3.89)
considered separately, and when the adaptive algorithm selegts . Fuiband 76.50% 84.67% — 94.61% (4.08)

from among the four subbands. For cases in which the fullbangubband Selection ~ 90.72% — 94.72% (3.14)  93.50% — 97.17% (2.51)

data are considered, the number of possible observations (VQ

codebook size) is 25, while when subband data are used a

total of 100 observations (codes) are possible. o . )
We now compare three different algorithms: (i) the PoMpF'L» HH or fullband the adaptivity in angle provides substantial

of Sec. Il with reset, (ii) a myopic adaptive strategy (Sec. II-FJ2INSVIS@VIS the HMM with fixed angular sampling\p =

with a fixed stop criterion of four actions, and (iii) an HMM® : , .

in which the number of observations is fixed at five. Note that The results in the _bottom-nght part of Table Il reflect results

the first observation is performed randomly (by selecting froMi"€n both the relative angle and the sensor subband are se-

among the possible targets and the corresponding target-sefRged: ither non-myopically via the POMDP or myopically as

orientations); for the two adaptive algorithms all subsequefiScussed in Sec. II-F. In almost half the number of actions on

measurements are performed adaptively. Therefore, for (érage, the POMDP manifests a relatively large improvement

adaptive algorithms, whefi — 1 actions are performed, thereln cClassification performanceis-a-vis the myopic approach
are a total of” observations with four actions (five observations).

For (i) and (ii) above we consider several examples of
adaptivity: (a) the full or subband sensor spectrum is fixed, IV. CONCLUSIONS
and adaptivity occurs in selection of the relative andle; A formulation has been presented for adaptive sensing
(b) the relative displacement is fixed &y = 5° and the and classification of multiple targets, based on viewing the
adaptive algorithm can select from among the four subbandstant or concealed object from a sequence of orientations.
and (c) both the frequency subband and angular displacemintaddition to selecting the relative platform position, the
Agp can be selected adaptively. For the POMDP the cost alfgorithm allows adaptive selection from among a suite of
sensing and classification actions are fixedCgt= 1 and sensors. The partially observable Markov decision process
C. = 40. (POMDP) yields a policy, balancing the future costs of sensing

The results of this study are presented in Table Il. Comvith the future expected reduction in the Bayes risk of making
sidering first the example for which the subband is fixed, wa classification decision. In addition to determining a policy
observe that best HMM results are manifested in the LL barfdy the optimal sensing actions, the policy defines when to
this same level of relative performance among the frequenstpp sensing and make a classification decision.
subbands is also observed for the two classes of adaptivéVhile the results reported here appear promising, there are
algorithms. It is interesting to observe that for fixed angulaeveral directions for further work. For example, the POMDP
sampling Ay = 5° there is substantial advantage found iwlassification formulation assumes that models are available
choosing the sensor bandwidth adaptively. Specifically, tiier all targets that may be observed when sensing. Underlying
best HMM performance occurs with LL data (86.11% correchodels were employed for each of the five targets considered
classification), while the myopic and POMDP algorithms yielth this study. In many practical applications one may come
respective correct classification of 90.72% and 94.72% lagross targets that have not been seen previously. The ques-
adaptively selecting from the four subbands. Table Il aldmns that may be asked in this setting are: (i) is the target
indicates that when the sensor bandwidth is fixed at LL, LHinder test one seen previously (for which a model exists);




(i) if so, which target is it; (iii) if not, which measurements[19] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning policies
should be performed to learn more about the new target
(and possibly build a model for it)? This problem requires a
balance of exploration and exploitation, the former interestgm] w. S. Lovejoy, “Computationally feasible bounds for partially observed
in learning new information, the latter interested in utilizing

the existing information toward a desired end. This balan

has been investigated for related problems in reinforcement
learning, associated with Markov decision processes (MDPs)
[28]. In an MDP the underlying states are observable at zféb]
times, and it is of interest to extend these ideas to POMDPs,

for which the underlying states are unobservable.
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