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Abstract

Compressive sensing (CS) is a framework whereby one performs N non-adaptive measurements to

constitute a vector v ∈ RN , with v used to recover an approximation û ∈ RM to a desired signal

u ∈ RM , with N ¿ M ; this is performed under the assumption that u is sparse in the basis represented

by the matrix Ψ ∈ RM×M . It has been demonstrated that with appropriate design of the compressive

measurements used to define v, the decompressive mapping v → û may be performed with error ‖u−û‖22
having asymptotic properties analogous to those of the best adaptive transform-coding algorithm applied

in the basis Ψ. The mapping v → û constitutes an inverse problem, often solved using `1 regularization

or related techniques. In most previous research, if L > 1 sets of compressive measurements {vi}i=1,L

are performed, each of the associated {ûi}i=1,L are recovered one at a time, independently. In many

applications the L “tasks” defined by the mappings vi → ûi are not statistically independent, and it may

be possible to improve the performance of the inversion if statistical inter-relationships are exploited. In

this paper we address this problem within a multi-task learning setting, wherein the mapping vi → ûi

for each task corresponds to inferring the parameters (here, wavelet coefficients) associated with the

desired signal ui, and a shared prior is placed across all of the L tasks. Under this hierarchical Bayesian

modeling, data from all L tasks contribute toward inferring a posterior on the hyperparameters, and once

the shared prior is thereby inferred, the data from each of the L individual tasks is then employed to

estimate the task-dependent wavelet coefficients. An empirical Bayesian procedure for the estimation

of hyperparameters is considered; two fast inference algorithms extending the relevance vector machine

(RVM) are developed. Example results on several data sets demonstrate the effectiveness and robustness

of the proposed algorithms.

Index Terms

Compressive sensing (CS), multi-task learning, simultaneous sparse approximation, hierarchical Bayesian

modeling, relevance vector machine (RVM).

August 6, 2008 DRAFT



2

I. INTRODUCTION

The development of wavelets [1], [2] has had a significant impact on several areas of signal processing

and compression. An important characteristic of wavelets is the sparse manner in which they represent

most natural signals. Specifically, let u ∈ RM represent the original signal, and let the matrix Ψ ∈ RM×M

represent a wavelet basis, then with the wavelet decomposition we have u = Ψθ, where θ ∈ RM is the

wavelet coefficients. If we further let ûm = Ψθm represent an approximation to u, where θm is the

same as θ except that the M −m smallest coefficients are set to zero. The compressive properties of

wavelets assure that ‖u− ûm‖2
2 is typically small for m ¿ M , thereby motivating the use of wavelets

in a new generation of compression techniques for images and video [3], [4].

While wavelets have had a profound impact on practical compression schemes, there are issues that

warrant further investigation. For example, while most natural signals are highly compressible in a

wavelet basis, the specific m wavelet coefficients that have largest amplitude vary strongly from signal to

signal. The aforementioned compression techniques must therefore adapt to each new signal under test,

this constituting the principal complexity of wavelet-based compression algorithms. Of more practical

importance, while the approximated signal ûm is highly compressed (m ¿ M ), one first had to measure

the M -dimensional signal u, and in some sense M − m pieces of data were measured unnecessarily.

This latter issue raises the following question: Is it possible to measure the informative part of the signal

directly, such that most unnecessary measurements are avoided from the start? This question has recently

been answered in the affirmative, with this spawning the new field of compressive sensing (CS) [5], [6].

In the framework of CS, when performing measurements, one does not attempt to directly measure

the m dominant wavelet coefficients, as this would require adapting to each new signal. Rather, in a CS

measurement one implicitly measures all of the wavelet coefficients, with each compressive measurement

performed by projecting the signal of interest u on a “random” basis that is constituted with “random”

linear combination of the basis functions in Ψ [5], [6].1 Each random projection corresponds to one

CS measurement, and N such measurements constitute the overall CS measurement vector v ∈ RN .

Written in matrix notation, the CS measurements may be expressed as v = ΦΨT u = Φθ, where

Φ = [r1, r2, . . . , rN ]T is a N ×M projection matrix, and rj ∈ RM is the jth aforementioned random

weights. The mapping from the CS data v to an approximation of the underlying signal u, with the

approximation represented as û, is under-determined, since typically N ¿ M . However, by exploiting

1It is worth emphasizing that the CS framework is not limited to wavelet-based representations, and it is applicable to any
signal representation (e.g., Fourier, Gabor, etc.) for which most of the basis-function coefficients are small, implying a sparse
representation.
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the fact that u is compressible in the basis Ψ (i.e., most of the elements in θ are equal – or close – to

zero), then one may approximate θ (and therefore u) accurately by solving an `1-regularized formulation

[5], [6]:

θ̂ = arg min
θ
{‖v −Φθ‖2

2 + λ‖θ‖1}, (1)

where the scalar λ controls the relative importance applied to the Euclidian error and the sparseness term

(the first and second expressions, respectively, inside the brackets in (1)). This basic framework has been

the starting point for several recent CS inversion algorithms, including linear programming [7] and greedy

algorithms [8]–[11] for sparse signal approximation. It has been demonstrated that in the asymptotic limit

(large N , and M > N ) the optimal û = Φθ̂ estimated from the non-adaptive CS measurements v has

error ‖u− û‖2
2 proportional to that of ‖u− ûm‖2

2 [5], [6].

A. Problem Statement

While there have been numerous techniques developed to constitute the inverse CS mapping v → û,

typically these algorithms perform the inversion separately and independently for each compressive mea-

surement v. In practice one may perform multiple sets of CS measurements; L > 1 sets of measurements

are denoted {vi}i=1,L. One may anticipate that many of the measurements in {vi}i=1,L are statistically

related, particularly when repeated measurements are taken of similar scenes or for the same type of

diagnostic task (e.g., repeated MRI images performed in a CS setting). By exploiting the statistical

relationships between these L sets of measurements, one may hope to constitute the L mappings vi → ûi

with fewer total measurements. Specifically, if Ni CS measurements are performed for the ith task to

perform the independent mapping vi → ûi with desired accuracy, then ideally less than
∑L

i=1 Ni total

CS measurements would be required by exploiting statistical inter-relationships between the L sensing

“tasks”. In this paper, we term this simultaneous inversion of multiple related signals as multi-task CS,

and develop the algorithms based on a hierarchical Bayesian model for this problem.

While our motivation to multi-task CS is mainly from a machine-learning perspective, related research

has been previously studied in signal processing under the name of “Simultaneous Sparse Approximation”

(SSA) [12]–[17] and more recently in compressive sensing with the name “Distributed Compressed

Sensing” (DCS) [18]. At the end of the paper a brief review of this related research is provided, with

connections to the work presented here.
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B. General Framework

The mapping vi → ûi may be framed as a sparse linear-regression problem [19]–[22] and solved by

a Bayesian algorithm [10]. Specifically, given the projection matrix Φi ∈ RNi×M , the linear relationship

between the CS measurements vi and the underlying signal ui is known, with this represented in the

system of equations: vi = ΦiΨT ui = Φiθi. Furthermore, as it was assumed at the start, θi ∈ RM is

sparse in the basis Ψ (i.e., most components of θi vanish, or at least may be set to zero with minimal

impact on the reconstruction of ui). Therefore, the CS inversion problem is constituted in terms of solving

for θi such that vi = Φiθi, under the constraint that θi is sparse. This may be expressed from a Bayesian

standpoint that we have a prior belief that θi should be sparse, data vi are observed from compressive

measurements, and the objective is to provide a posterior belief (density function) for the values of the

weights θi [10]. Of particular relevance to multi-task CS, this Bayesian perspective of CS is found to be

very useful.

Each of the CS measurements {vi}i=1,L yields a corresponding regression “task” vi → θ̂i, and

performing multiple such learning tasks has been referred to in the machine-learning community as

multi-task learning [23], which aims at sharing information effectively among multiple related tasks.

Typical approaches to information sharing among tasks include: sharing hidden nodes in neural networks

[24], [25], placing a common prior in hierarchical Bayesian models [26]–[28], sharing a common structure

on the predictor space [29], and structured regularization in kernel methods [30], among others. Because

of the relationship of the CS inversion to linear regression, hierarchical Bayesian models are a natural

and convenient framework for multi-task learning of CS.

Hierarchical Bayesian models are one of the most important approaches for multi-task learning [31]–

[35]. Such representations provide the flexibility to model both the individuality of tasks (experiments),

and the correlations between tasks. To demonstrate the idea, a graphical model representation of multi-task

CS is illustrated in Fig. 1, with detailed parameters to be introduced in the next section. In this formulation

usually the bottom layer of the hierarchy is composed of individual models with task-specific parameters.

On the layer above, tasks are connected together via a common prior placed on those parameters; on

a layer above is a hyper-prior, invoked on parameters of the prior at the level below. This model can

achieve efficient information-sharing between tasks for the following reason. Learning of the common

prior is a part of the training process, and data from all tasks contribute to learning the common prior,

thus making it possible to transfer information between tasks (via sufficient statistics). Given the prior,

individual models are learned independently. As a result, the estimation of a regressor (task) is affected
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Fig. 1. A hierarchical Bayesian model representation of the mutli-task CS, where Φi = [ri,1, ri,2, . . . , ri,Ni ]
T is the projection

matrix of task i, each row of which is a set of random weights drawn i.i.d. from a zero-mean Gaussian distribution. The detailed
parameters are to be introduced in Sec. II.

by both its own training data and by data from the other tasks related through the common prior, and

the inter-relationships among the tasks are determined automatically through the joint learning.

While the formulation is constituted in a fully Bayesian setting, solving it efficiently (i.e., finding a

posterior density function on α and α0 in Fig. 1) can be challenging (see [36] for an example). Therefore,

an empirical Bayesian procedure is employed for the fast point estimate of the hyperparameters α and α0

in Fig. 1. This yields a computationally efficient multi-task CS inference algorithm that extends previous

research in the Bayesian CS analysis [10], wherein the Bayesian inversion vi → θ̂i was performed one

task at a time (single-task learning, i.e., L = 1).

In addition to a hierarchal Bayesian model of multi-task CS and a fast inference algorithm, a modified

sparse linear-regression model is developed, of interest both for the single-task and multi-task CS settings.

As discussed further below, this extension analytically integrates out the noise-variance term in the

regression model, and it yields improved robustness over the previous formulation.

The remainder of the paper is structured as follows. In Sec. II we introduce a hierarchical Bayesian

model for multi-task CS that builds naturally upon previous research on Bayesian CS [10]; a fast sequential

optimization algorithm based on an empirical Bayesian procedure is developed for inference. In Sec. III

we propose a modified sparse linear-regression model by marginalizing the noise variance, and develop

August 6, 2008 DRAFT



6

a fast inference algorithm as well. Example results on multiple datasets are presented in Sec. IV. A

review of work related to multi-task CS is provided in Sec. V, followed in Sec. VI by conclusions and a

discussion of future work.

II. HIERARCHICAL MULTI-TASK CS MODELING

A. Bayesian Regression Formulation

Assume that L sets of CS measurements are performed, with these multiple sensing tasks statistically

inter-related, as defined precisely below. The L sets of measurements are represented as {vi}i=1,L, where

vi = ΦiΨT ui = Φiθi, and in general each measurement vector vi ∈ RNi employs a different random

projection matrix Φi ∈ RNi×M , for i = 1, 2, . . . , L. This generalizes the formulation considered in [12]–

[15], [17], wherein a single Φ is employed across all the L tasks. In the context of a regression analysis,

we assume [10]

vi = Φiθi + εi, (2)

where εi ∈ RNi is a residual error vector, modeled as Ni i.i.d. draws of a zero-mean Gaussian random

variable with unknown precision α0 (variance 1/α0). The likelihood function for the parameters θi and

α0, based on the observed data vi, may therefore be expressed as

p(vi|θi, α0) = (2π/α0)−Ni/2 exp
(
−α0

2
‖vi −Φiθi‖2

2

)
. (3)

The parameters θi (here, wavelet coefficients) characteristic of task i are assumed to be drawn from a

product of zero-mean Gaussian distributions that are shared by all tasks, and it is in this sense that the

L tasks are statistically related. Specifically, letting θi,j represent the jth wavelet (or scaling function)

coefficient for CS task i, we have

p(θi|α) =
M∏

j=1

N (θi,j | 0, α−1
j ), (4)

where N (· | 0, α−1
j ) is a zero-mean Gaussian density function with precision αj . It is important to note

that the hyperparameters α = {αj}j=1,M are shared among all L tasks, and therefore the data from all

CS measurements {vi}i=1,L will contribute to learning the hyperparameters, offering the opportunity to

adaptively borrow strength from the different measurements to a degree controlled by α.

To promote sparsity over the weights θi, Gamma priors are placed on the hyperparameters α, and
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similarly on the noise precision α0:

p(α0| a, b) = Ga(α0| a, b) =
b a

Γ(a)
α

(a−1)
0 exp(−bα0), (5)

p(α| c, d) =
M∏

j=1

Ga(αj | c, d). (6)

It has been demonstrated [19] that appropriate choice of parameters c and d encourages a sparse rep-

resentation for the coefficients in the vector θi, where here this concept is extended to a multi-task CS

setting. Typically, when c = d = ε, with ε > 0 a small constant, Ga(·| c, d) has a large spike concentrated

at zero and a heavy right tail. The spike corresponds to basis functions for which there is essentially

no borrowing of information. Such basis functions characterize components that are idiosyncratic to

specific signals. At the other extreme, basis functions for which αj is in the right tail have coefficients

that are shrunk strongly to zero for all tasks, favoring sparseness, while borrowing information about

which basis functions are not important for any of the signals in the collection. For small ε, there will

be many such basis functions. As a default choice which avoids subjective choice of c, d and leads to

computational simplifications, we set c = d = 0. For the Gamma prior on the noise precision α0, we

also let a = b = 0 as a default choice. This choice corresponds to a commonly-used improper prior

expressing a priori ignorance about plausible values for the residual precision.2 With these parametric

definitions, a graphical model representation of multi-task CS is illustrated in Fig. 1.

Given the L sets of CS measurements {vi}i=1,L from the (assumed) statistically related sources, by

applying the Bayes’ rule, one may in principle infer a posterior density function on the hyperparameters

α and the noise precision α0,

p(α, α0| {vi}i=1,L, a, b, c, d) =
p(α0| a, b)p(α| c, d)

∏L
i=1

∫
dθip(vi|θi, α0)p(θi|α)∫

dα
∫

dα0p(α0| a, b)p(α| c, d)
∏L

i=1

∫
dθip(vi|θi, α0)p(θi|α)

, (7)

where the integral in (7) with respect to α is actually an M -dimensional integral, with each integral linked

to one component of α; similarly, each integral with respect to θi is an M -dimensional integral, over all

wavelet-coefficient weights. To avoid the complexity of evaluating some of these integrals3, particularly

those with respect to α and α0, we seek a point estimate for the parameters α and α0, and a maximum

2While the sparsity analysis provided here is largely following that of RVM [19], which is intuitive and conceptual, a more
recent and rigorous analysis of sparse Bayesian learning and its superior performance on sparse representation can be found at
[37], [38]. More relevantly, it is the log-det term of the likelihood (13) that produces sparsity.

3A variational Bayesian approach [36] can be applied to compute an approximation to these integrals, with the same
computational cost as a MAP solution.
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a posteriori (MAP) estimate for α and α0 is found as

{αMAP, αMAP
0 } = arg max

α,α0

(
log p(α0| a, b) + log p(α| c, d) +

L∑

i=1

log
∫

dθi p(vi|θi, α0) p(θi|α)

)
,

(8)

which reduces to the simplified form in the limit as a, b, c, d → 0 4:

{αML, αML
0 } = arg max

α,α0

L∑

i=1

log
∫

dθi p(vi|θi, α0) p(θi|α), (9)

which can be interpreted as a MAP estimate under an improper, default prior or as a maximum likelihood

(ML) estimate. The strategy that estimates a point estimate for α and α0 via (9) is related to extensive

research in statistics on empirical Bayesian analysis [39]. Specifically, in the empirical Bayesian context,

a data-dependent (and hence “empirical”) prior on the weights θi is invoked, and the hyperparameters

of this “empirical” prior are estimated solely from the observed data by integrating out the unknown

weights θi. This strategy has also been called evidence maximization or type-II maximum likelihood to

describe the optimization process [19], [40].

Once the point estimates for α and α0 have been constituted by the ML approximation (9), the posterior

density function for the coefficients θi can be evaluated analytically. In particular, by Bayes’ rule, using

(3) and (4), we have

p(θi|vi, α, α0) =
p(vi|θi, α0) p(θi|α)∫

dθi p(vi|θi, α0) p(θi|α)
= N (θi|µi,Σi), (10)

with mean and covariance given by

µi = α0ΣiΦT
i vi, (11)

Σi = (α0ΦT
i Φi + A)−1, (12)

where A = diag(α1, α2, . . . , αM ), each diagonal element of which is from the hyperparameters α.

Before proceeding, we note the characteristics of the aforementioned algorithm. Using a ML (empirical

Bayesian) procedure, one constitutes point estimates for the hyperparameters α and α0. Importantly,

as implemented in (9), the hyperparameter point estimates are based upon all of the observed CS

measurements {vi}i=1,M , emphasizing the multi-task nature of the analysis. Subsequently, using the

point estimate constituted using all of the data, a full posterior estimate is constituted for the basis-

4This can be demonstrated by considering a log transformation to random variables α and α0 that are Gamma distributed,
and maximizing the transformed version of (8), as shown in the appendix of [19]. Thus, the limit holds in the logarithmic scale.
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function coefficients {θi}i=1,M , where for this latter calculation θi is only dependent on vi. Thus, to

estimate the hyperparameters all of the data are used, while to update an approximation to the wavelet

coefficients θi only the associated task-dependent CS measurements are employed (see Fig. 1). This

suggests an iterative algorithm that alternates between these global and local solutions, as outlined next.

B. Empirical Bayesian estimate for α and α0

The empirical Bayesian estimate for α and α0 via (9) is determined by maximizing the marginal

likelihood, or equivalently, its logarithm:

L(α, α0) =
L∑

i=1

log p(vi|α, α0) =
L∑

i=1

log
∫

p(vi|θi, α0)p(θi|α)dθi

= −1
2

L∑

i=1

[
Ni log 2π + log |Ci|+ vT

i C−1
i vi

]
, (13)

with

Ci = α−1
0 I + ΦiA−1ΦT

i . (14)

There are (at least) two approaches that can be applied to maximize L(α, α0) with respect to α and α0.

1) Iterative Solution: Differentiating (13) with respect to α and α0, setting the result to zero and

rearranging, following the approach of MacKay [41], yields

αnew
j =

L− αj
∑L

i=1 Σi,(j,j)∑L
i=1 µ2

i,j

, j ∈ {1, 2, . . . , M}, (15)

αnew
0 =

∑L
i=1(Ni −M +

∑M
j=1 αjΣi,(j,j))∑L

i=1 ‖vi −Φiµi‖2
2

, (16)

where µi,j is the jth component of µi, and Σi,(j,j) is the jth diagonal element of Σi. Note that αnew

and αnew
0 are a function of {µi}i=1,L and {Σi}i=1,L, while {µi}i=1,L and {Σi}i=1,L are a function of

α and α0. This suggests an iterative algorithm, which iterates between (11)-(12) and (15)-(16), until

a convergence criterion has been satisfied. In this process, it is observed that many of the αj tend to

infinity (or numerically indistinguishable from infinity given the machine precision) for those {θi,j}L
i=1

that have insignificant amplitudes for representation of {vi}L
i=1; only a relatively small set of {θi,j}L

i=1,

for which the corresponding αj remains relatively small, contribute for the representation, and the level

of joint sparseness is determined automatically.

While the iterative algorithm described above has been demonstrated to yield a highly accurate sparse

linear-regression representation (e.g., see [19] for L = 1), the following practical limitation is observed
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when applied to large-scale problems. When evaluating (12) one must invert matrices of size M ×M , an

O(M3) operation5, thereby making this approach relatively slow for data {vi}i=1,L of large dimension

Ni (at least for the first few iterations). This motivates development of the following fast algorithm.

2) Fast Algorithm: Similar to [43], considering the dependence of L(α, α0) on a single hyperparameter

αj , j ∈ {1, 2, . . . , M}, we can decompose Ci in (14) as

Ci = α−1
0 I +

∑

k 6=j

α−1
k Φi,kΦT

i,k + α−1
j Φi,jΦT

i,j

= Ci,−j + α−1
j Φi,jΦT

i,j , (17)

where Φi = [Φi,1,Φi,2, . . . ,Φi,M ], and Ci,−j is Ci with the contribution of basis function Φi,j removed.

Applying the matrix determinant and inversion lemmas, we can write the terms of interest in L(α, α0)

as

|Ci| = |Ci,−j | |1 + α−1
j ΦT

i,jC
−1
i,−jΦi,j |, (18)

C−1
i = C−1

i,−j −
C−1

i,−jΦi,jΦT
i,jC

−1
i,−j

αj + ΦT
i,jC

−1
i,−jΦi,j

. (19)

From this, we can write

L(α, α0) = −1
2

L∑

i=1

[
Ni log 2π + log |Ci,−j |+ vT

i C−1
i,−jvi − log

(
αj

αj + si,j

)
− q2

i,j

αj + si,j

]

= L(α−j , α0) +
1
2

L∑

i=1

[
log

(
αj

αj + si,j

)
+

q2
i,j

αj + si,j

]

= L(α−j , α0) + `(αj , α0), (20)

where α−j is the same as α except the jth component is removed, and we have defined

si,j , ΦT
i,jC

−1
i,−jΦi,j , and qi,j , ΦT

i,jC
−1
i,−jvi. (21)

Differentiating `(αj , α0) with respect to αj and setting the result to zero, followed by algebra, yields

∂L(α, α0)
∂αj

=
L∑

i=1

s2
i,j/αj + si,j − q2

i,j

2(αj + si,j)2
= 0. (22)

5A simple modification to (12) is available from [42] by exploiting the matrix inversion lemma, which leads to an O(N3
i )

operation per iteration. Nonetheless, the iterative implementation still does not scale well.
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Except for the trivial solution αj = ∞, the other solutions of (22) are infeasible to be expressed

analytically as this requires finding the zeros of a polynomial of degree 2L− 1. To avoid the complexity

of the zero-finding of polynomials, we thus assume that αj ¿ si,j
6 and the denominator of (22) is now

relatively invariant with respect to αj . Therefore, we may approximate another solution as

αj ≈ L∑L
i=1(q

2
i,j − si,j)/s2

i,j

, if
∑L

i=1(q
2
i,j − si,j)/s2

i,j > 0, (23)

αj = ∞, otherwise. (24)

The analysis in Appendix A shows that the finite approximate solution (23) is at the vicinity of a

stationary point of `(αj , α0), where `(αj , α0) has a maximum (which may be not unique). Due to this

approximation, we no longer perform an exact maximum likelihood estimation of αj , but only (mono-

tonically) increase L(α, α0) at each iteration, and thus more iterations are incurred upon convergence.

But we find this approximation is extremely effective as it allows much faster computation of αj than

exactly solving (22). In addition, (23) reduces to the exact formula of αj when L = 1, which corresponds

to single-task learning as considered in [43].

The remaining formulas are similar to those considered for the fast algorithm of the RVM, and therefore

one may refer to [43] for more details. We here only summarize some of its key properties. Compared

with the iterative algorithm presented above, the fast algorithm operates in a constructive manner, i.e.,

sequentially adds (or deletes) candidate basis function to the model until all m “relevant” basis functions7

(for which the associated weights are nonzero) have been included. Thus, the complexity of the algorithm

is more related to m than M . Further, by using the matrix inversion lemma, the inverse operation in

(12) has been implemented by iterative update formulae with reduced complexity (see the appendix of

[43]). Detailed empirical analysis of this fast algorithm shows that it has complexity O(LMm2), which

is more efficient than the iterative solution, especially when the underlying signals are truly jointly sparse

(m ¿ M ).

6This has generally been found to be valid numerically, e.g., typically si,j > 20αj . The consequence of this approximation
is a fast solving of (22), but with slightly more iterations upon convergence. See the text that follows for explanations.

7Here, the set of m “relevant” basis functions is a union of all the “relevant” basis functions selected by the algorithm for
all the L tasks. One basis function will be included if it is relevant to at least one task. Because of the (assumed) statistical
inter-relationship among the tasks, most of the “relevant” basis functions selected for each task are expected to be overlapped,
and thus ideally m ¿ M .
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III. INTEGRATING OUT REGRESSION NOISE VARIANCE

To apply the fast algorithm discussed above, an initial guess of α0 is required, and this value is then

fixed thereafter to allow the iterative update formulae [43]. The α0 is a nuisance parameter, which in

effect may have an identifiability issue [17], and an inappropriate value of it may contaminate algorithm

performance significantly. In this section we introduce a modified sparse-regression model for multi-

task CS inversion. The algorithm integrates α0 out, rather than seeking a point estimate of α0, and the

computation is solely concentrated on recovering the hyperparameters α. This allows a fast sequential

optimization method, which is similar to the fast algorithm in Sec. II-B2, but without the constraint

of having a fixed point estimate for α0. As to be demonstrated in the next section, the modified fast

algorithm has improved robustness to the parameter setting over the original RVM and the fast algorithm

in Sec. II-B2.

A. Modified Sparse Linear-Regression Model

Similar to the original RVM formulation [19] and the formulation in Sec. II, we define a zero-mean

Gaussian prior for each component of θi, and define a Gamma prior on the noise precision α0:

p(θi|α, α0) =
M∏

j=1

N (θi,j | 0, α−1
0 α−1

j ), (25)

p(α0| a, b) = Ga(α0| a, b). (26)

Note that the only difference between the formulation specified above and that in the original RVM is α0

is included in the prior of θi [44]. Mathematically, this modification allows the integration involved in

the sequel to be performed analytically. As we can see, given α and CS measurements vi, the likelihood

function of θi may be expressed as

p(θi|vi, α) =
∫

p(θi|vi, α, α0)p(α0| a, b)dα0

=
Γ(a + M/2)

[
1 + 1

2b(θi − µi)TΣ−1
i (θi − µi)

]−(a+M/2)

Γ(a)(2πb)M/2|Σi|1/2
, (27)

where

µi = ΣiΦT
i vi, (28)

Σi = (ΦT
i Φi + A)−1, (29)
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with A = diag(α1, α2, . . . , αM ). By integrating α0 out, we notice that the likelihood function has

been changed from a multivariate Gaussian distribution (10) to a multivariate Student-t distribution

(27). Therefore, theoretically, this modified formulation has the advantage of inducing a heavy-tailed

distribution on the basis coefficients, as is apparent in (27), and allows for more robust shrinkage and

borrowing of information, as some tasks can be outliers [45], [46].

As shown in expression (2), the additive noise is modeled as i.i.d. draws from a zero-mean Gaussian

random variable with precision α0. In placing a Gamma prior on the residual precision α0, and then

marginalized out the precision α0, we are not changing the additive noise structure of expression (2).

Instead, we are inducing a heavier-tailed Student-t distribution on the residual noise, which is more robust

in allowing outlying measurements. Hence, instead of introducing an assumption, we are relaxing the

assumption of Gaussian noise to obtain a more robust approach. The approach of placing a hyperprior on

parameters to induce heavier-tailed distributions for greater robustness is common in Bayesian statistics.

The approach of also incorporating the residual precision, α0, in the prior for the basis coefficients (as

in expression (25)) is a common specification [44]. Because we still have a distinct αj for every element

of the coefficient vector, this is not restrictive but is strictly incorporated for tractability and to induce a

heavier-tailed prior for the basis coefficients.

B. Empirical Bayesian Estimate for α

Similar to the algorithms in Sec. II, an empirical Bayesian approach can be applied to estimate

hyperparameters α, i.e., seeking α to maximize the marginal likelihood, or equivalently, its logarithm:

L(α) =
L∑

i=1

log p(vi|α) =
L∑

i=1

log
∫

p(vi|θi, α0)p(θi|α, α0)p(α0| a, b)dθi dα0

= −1
2

L∑

i=1

[
(Ni + 2a) log

(
vT

i B−1
i vi + 2b

)
+ log |Bi|

]
+ const, (30)

with

Bi = I + ΦiA−1ΦT
i . (31)

1) Iterative Solution: Both direct differentiation and the EM algorithm can be applied to maximize

(30) for a point estimate of α, yielding

αj =
L∑L

i=1 µ2
i,j(Ni + 2a)/(vT

i B−1
i vi + 2b) + Σi,(j,j)

, j ∈ {1, 2, . . . ,M}. (32)
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This suggests an iterative algorithm that iterates between (32) and (28)–(29) until convergence is achieved.

Since the computation of (29) involves the matrix inversion of size M ×M , an O(N3
i ) operation, this

undermines the applications of this approach for data {vi}i=1,L of large dimension Ni.

2) Fast Algorithm: A fast algorithm can be derived in a manner parallel to that of the fast RVM

algorithm [43]. Considering the dependence of L(α) on a single hyperparameter αj , j ∈ {1, 2, . . . , M},

we may decompose Bi in (31) as

Bi = I + ΦiA−1
i ΦT

i = I +
∑

k 6=j

α−1
k Φi,kΦT

i,k + α−1
j Φi,jΦT

i,j

= Bi,−j + α−1
j Φi,jΦT

i,j , (33)

where Bi,−j is Bi with the contribution of basis function Φi,j removed. The matrix determinant and

inversion lemmas may be used to express

|Bi| = |Bi,−j | |1 + α−1
j ΦT

i,jB
−1
i,−jΦi,j |, (34)

B−1
i = B−1

i,−j −
B−1

i,−jΦi,jΦT
i,jB

−1
i,−j

αj + ΦT
i,jB

−1
i,−jΦi,j

. (35)

From this, we may write

L(α) = −1
2

L∑

i=1

[
(Ni + 2a) log

(
1
2
vT

i B−1
i,−jvi + b

)
+ log |Bi,−j |

]
+ const

−1
2

L∑

i=1

[
log(1 + α−1

j si,j) + (Ni + 2a) log

(
1− q2

i,j/gi,j

αj + si,j

)]

= L(α−j) + `(αj), (36)

where α−j is the same as α except the jth component is removed, and we have defined

si,j , ΦT
i,jB

−1
i,−jΦi,j , qi,j , ΦT

i,jB
−1
i,−jvi, and gi,j , vT

i B−1
i,−jvi + 2b. (37)

Differentiating L(α) with respect to αj and setting the result to zero, followed by algebra, yields:

∂L(α)
∂αj

=
L∑

i=1

si,j(si,j − q2
i,j/gi,j)/αj − (Ni + 2a)q2

i,j/gi,j + si,j

2(αj + si,j)(αj + si,j − q2
i,j/gi,j)

= 0. (38)

Similar to the fast algorithm in Sec. II-B2, except for the trivial solution αj = ∞, the other solutions

of (38) are infeasible to be expressed analytically. We thus assume that αj ¿ si,j (again, this generally

holds numerically, e.g., typically si,j > 20αj) and the denominator of (38) is now relative invariant with
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respect to αj . Therefore, we may approximate another solution as

αj ≈ L
∑L

i=1
(Ni+2a)q2

i,j/gi,j−si,j

si,j(si,j−q2
i,j/gi,j)

, if
∑L

i=1
(Ni+2a)q2

i,j/gi,j−si,j

si,j(si,j−q2
i,j/gi,j)

> 0, (39)

αj = ∞, otherwise. (40)

Again, the analysis in Appendix A shows that the finite approximate solution (39) is at the vicinity

of a stationary point of `(αj), where `(αj) has a maximum (which may be not unique). Due to this

approximation, we no longer perform an exact maximum likelihood estimate of αj , but only (monoton-

ically) increase L(α) at each iteration. We find this approximation is extremely effective as it allows

much faster computation of αj than exactly solving (38). In addition, (39) reduces to the exact formula

of αj when L = 1, which corresponds to single-task CS.

Recall that setting αj = ∞ is equivalent to setting θi,j = 0, and hence removing Φi,j from the

representation; hence, (39)–(40) controls the addition and deletion of particular Φi,j from the signal

representation. If we perform these operations sequentially for varying j, we realize an efficient learning

algorithm.

In practice, it is relatively straightforward to compute si,j and qi,j for all the basis vector Φi,j , including

those not currently utilized in the model (i.e., for which αj = ∞). These quantities can be computed by

maintaining and updating values of

Si,j = ΦT
i,jB

−1
i Φi,j , Qi,j = ΦT

i,jB
−1
i vi, and Gi = vT

i B−1
i vi + 2b, (41)

and from these it follows simply:

si,j =
αjSi,j

αj − Si,j
, qi,j =

αjQi,j

αj − Si,j
, and gi,j = Gi +

Q2
i,j

αj − Si,j
. (42)

Further, it is convenient to utilize the matrix inversion lemma to obtain the quantities of interest:

Si,j = ΦT
i,jΦi,j −ΦT

i,jΦiΣiΦT
i Φi,j , (43)

Qi,j = ΦT
i,jvi −ΦT

i,jΦiΣiΦT
i vi, (44)

Gi = vT
i vi − vT

i ΦiΣiΦT
i vi + 2b. (45)

Here quantities Φi and Σi contain only those basis vectors that are currently included in the model, and

the computation thus scales as the cube of that measure, which is typically only a very small fraction of

M . Furthermore, these quantities can also be calculated via the update formulae, as shown in the Appendix
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B, with reduced computation. Similar update formulae are applied to the original fast RVM algorithm

[43] when α0 is fixed. However, our modified fast algorithm is applicable without this constraint.

IV. EXAMPLE RESULTS

We denote the fast algorithm in Sec. II-B2 as BCS, and the fast algorithm in Sec. III-B2 as BCS∗,

and test the performance of BCS and BCS∗ on both single-task (ST) and multi-task (MT) CS inverse

problems. To be concise, in the example CS-reconstruction figures that follow we only present the

BCS∗ results, and the full quantitative performance comparison between BCS and BCS∗ is summarized

in tables. For a fair comparison between BCS and BCS∗, we initialize α0 = 102/std(v)2 for BCS

and fix this value thereafter (for the fast algorithm); with regard to BCS∗, we set a = 102/std(v)2

and b = 1 such that the mean of the Gamma prior p(α0| a, b)8 is aligned with the fixed value of α0

in BCS. As a comparison, we also provide the performances of Orthogonal Matching Pursuit (OMP)

[8] for ST learning and Simultaneous Orthogonal Matching Pursuit (S-OMP) [47] for MT learning. In

the experiments we evaluate the reconstruction error as ‖u − ûmethod‖2/‖u‖2. All the computations

presented here were performed on a 3.4GHz Pentium machine. The Matlab code is available online at

http://www.ece.duke.edu/˜shji/BCS.html.

A. 1D Signals

In the first example we consider L= 2 signals of length M = 512, each containing 20 spikes created

by choosing 20 locations at random and then putting ±1 at these points (Figs. 2(a-b)). The two original

signals are created such that they have 75% spikes at the same positions, but all have random ±1

amplitudes. The projection matrix Φi is constructed by first creating a Ni ×M matrix with i.i.d. draws

of a Gaussian distribution N (0, 1), and then the rows of Φi are normalized to unit norm. Zero-mean

Gaussian noise with standard deviation σ0 = 0.005 is added to each of the Ni measurements that define

the data vi. In the experiment N1 = 90, N2 = 70 and the reconstructions are implemented by ST-CS

and MT-CS, respectively.

Figures 2(c-d) demonstrate the reconstruction results with BCS∗ for single-task inference. Because

of insufficient number of measurements (Ni is smaller than a minimum quantity required for faithful

reconstruction [5], [6]), the reconstructed signals are highly noisy. However, since two original signals

are not statistically independent, multi-task CS is able to take advantage of the inter-relationships and

8The variance of the Gamma prior is a/b2.
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yields almost perfect reconstructions (Figs. 2(e-f)). The results of BCS are very similar to BCS∗, and

therefore are omitted here.
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(c) ST Reconstruction 1, N=90
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(d) ST Reconstruction 2, N=70
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(f) MT Reconstruction 2, N=70

Fig. 2. Reconstruction of the Spikes of length M =512. The two original signals have 75% spikes at the same positions, but
all have random ±1 amplitudes. (a-b) Original signals; (c-d) reconstructed signals by ST-BCS∗; (e-f) reconstructed signals by
MT-BCS∗.
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Fig. 3. Reconstruction errors of ST-BCS∗ and MT-BCS∗ as a function of increasing N . The two original signals have 75%,
50%, 25%, 0% spikes at the same positions, with random ±1 amplitudes. The results are averaged over 100 runs. (a) The
average reconstruction errors for 75%, 50%, 25% and 0% similarity; (b) the variance of reconstruction errors for 75% similarity.

To study how the similarity between the original signals affects the reconstruction performance of

MT-CS, in the second experiment we use the same dataset as in Fig. 2 and study the performances of

BCS∗ for different similarity levels, e.g., 75%, 50%, 25% or 0% spikes are at the same locations. For
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each similarity level, starting at the 41st measurement, after each random measurement is conducted, the

associated reconstruction errors are computed for ST-BCS∗ and MT-BCS∗, until a total 140 measurements

are conducted for each of the two original signals. Because of the randomness in the experiment (e.g.,

the random CS measurements, the random locations and ±1 amplitudes of the spikes, and the random

additive noise), we execute the experiment 100 times with the average performance reported in Fig. 3.

It is demonstrated in Fig. 3 that the reconstruction error of the MT-BCS∗ is much smaller than that

of the ST-BCS∗, when the similarities are at 75% and 50%. However, when the similarity is 25%, the

improvements are minor or none; when the similarity is 0% (i.e., two signals are totally independent),

the MT performances are even worse than ST. This is consistent with our intuition that for multi-task CS

to be superior, the original signals should have at least some level of similarity, otherwise transferring

information among totally independent tasks will deteriorate rather than help to improve the performance.

Therefore, the multi-task CS framework developed here is particularly relevant for problems in which

the images under test have a relatively high degree of similarity, e.g., when performing CS inversion of

multiple medical images of the same body part, with the multiple CS measurements taken from the same

or different individuals; or for video data, where consecutive images are expected to have a high degree

of statistical similarity. The example results of this kind are provided next.
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Fig. 4. Reconstruction errors of OMP, BCS, and BCS∗ for single-task (ST) learning and multi-task (MT) learning as a function
of increasing noise power σ0. The two original signals have 75% spikes at the same positions, with random ±1 amplitudes; we
made N = 110 random measurements for each original signal. The results are averaged over 100 runs.

To study how the additive noise affects the reconstruction performance of MT-CS, in the third ex-
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periment we use the same dataset as in Fig. 2 and study the performance of BCS∗ at an increasing

level of noise power σ0. As a comparison, we also provide the performances of OMP and BCS for

ST-CS and MT-CS. In the experiment, the two original signals have 75% spikes at the same positions,

with random ±1 amplitudes; we made N = 110 random measurements for each original signal; the

algorithms then exploited these two sets of measurements independently or jointly for reconstruction.

Again, due to the randomness in the experiment, we execute the experiment 100 times with the average

performance reported in Fig. 4.

It is demonstrated in Fig. 4 that as the noise power σ0 increases, the reconstruction errors generally

increase for all the algorithms considered, while typically the MT-CS algorithms outperform the ST-CS

algorithms. Regarding the performance comparison between BCS, BCS∗ and OMP, the superiority of

BCS and BCS∗ is demonstrated by their lower reconstruction errors than that of OMP, consistently over

a range of noise powers. Comparing the reconstruction errors of BCS and BCS∗, the benefit of BCS∗

over BCS is more pronounced in single-task learning than in multi-task learning. This is likely because

in multi-task learning one utilizes more data, and therefore the differences manifested by an improved

algorithm are less apparent. The results indicate that, in general, the marginalization of α0, as in BCS∗,

may be a preferred approach rather than estimating α0 as in BCS, particularly when the available data

are not abundant.

B. 2D Images

In the following set of experiments, the performance of MT-CS is compared to ST-CS on three example

problems that involve 2D images. All the projection matrices Φ considered here are drawn from a uniform

spherical distribution [48].

1) Random-Bars: Figure 5 shows the reconstruction results for Random-Bars, where Fig. 5(a) is from

[48] and the other two images (b-c) are modified from (a) to represent similar tasks for simultaneous

CS inversion, e.g., the intensities of all the rectangles in (b-c) are randomly permuted from (a), and the

positions of all the rectangles are shifted by distances randomly sampled from a uniform distribution in

[−10, 10]. All three original images have the size 1024×1024. We used the Haar wavelet expansion, which

is well suited to images of this type, with a coarsest scale j0 = 3, and a finest scale j1 = 6. Figures 5(a-c)

shows the result of linear reconstruction (i.e., the inverse wavelet transform) with N = 4096 samples,

which represents the best performance that could be achieved by all the CS implementations considered

here. Figures 5(d-f) have results of ST-BCS∗ by using the hybrid CS scheme (i.e., the CS measurements

are made only on the fine-scale coefficients; no compression on the coarsest-scale coefficients) [48] with
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N = 670 compressed samples for each task, whereas Figs. 5(g-i) have the results of MT-BCS∗. The

performance comparison between BCS and BCS∗ is summarized in Table I.

It is demonstrated that MT-CS yields a better reconstruction performance than that of ST-CS, both

for BCS and BCS∗; comparing the reconstruction errors of BCS and BCS∗ for the case of single task

learning, ST-BCS∗ is markedly better than ST-BCS, whereas for multi-task learning MT-BCS∗ is only

slightly better than MT-BCS. This is consistent to the observations in Fig. 4, where the benefit of BCS∗

over BCS is more apparent in ST-CS than in MT-CS.

(a) Linear 1, N=4096 (b) Linear 2, N=4096 (c) Linear 3, N=4096

(d) ST 1, N=670 (e) ST 2, N=670 (f) ST 3, N=670

(g) MT 1, N=670 (h) MT 2, N=670 (i) MT 3, N=670

Fig. 5. Reconstruction of Random-Bars with hybrid CS. (a-c) Linear reconstructions of three original images. Example (a)
is from [48], and (b-c) are the modified images from (a) by us to represent similar tasks for simultaneous CS inversion. The
intensities of all the rectangles in (b-c) are randomly permuted from (a), and the positions of all the rectangles are shifted by
distances randomly sampled from a uniform distribution in [−10, 10]. (d-f) reconstructed images by ST-BCS∗; (g-i) reconstructed
images by MT-BCS∗.

2) MRI Images: Figure 6 shows the reconstruction results for MRI Images, which includes five image

slices of a human head. All five original images have the size 128× 128. We used a hybrid CS scheme

[48] for image reconstruction, with a coarsest scale j0 = 3, and a finest scale j1 = 6 on the “Daubechies

8” wavelet. Figure 6(a-e) show the results of linear reconstruction with N = 4096 samples, which

represents the best performance that could be achieved by all the CS implementations considered here.

Figures 6(f-j) have results for the ST-BCS∗ with N = 1636 compressed samples for each task, whereas

Figs. 6(k-o) have the results for MT-BCS∗. The full performance comparison between BCS and BCS∗
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TABLE I
RECONSTRUCTION PERFORMANCES OF LINEAR, ST-CS AND MT-CS ON Random-Bars.

Recon. Error Run Time (secs)
Task 1 Task 2 Task 3 Task 1 Task 2 Task 3

ST-BCS 0.4439 0.3619 0.3674 63.91 40.72 24.53
MT-BCS 0.2319 0.2281 0.1977 67.76 per task
ST-BCS∗ 0.3678 0.3502 0.3038 57.91 39.99 33.33
MT-BCS∗ 0.2277 0.2181 0.1936 39.74 per task
Linear 0.2271 0.2178 0.1936 0

are summarized in Table II. The relative performance of ST-BCS to MT-BCS, and between BCS and

BCS∗, are consistent with the above Random-Bars results.

(a) Linear 1, N=4096 (b) Linear 2, N=4096 (c) Linear 3, N=4096 (d) Linear 4, N=4096 (e) Linear 5, N=4096

(f) ST 1, N=1636 (g) ST 2, N=1636 (h) ST 3, N=1636 (i) ST 4, N=1636 (j) ST 5, N=1636

(k) MT 1, N=1636 (l) MT 2, N=1636 (m) MT 3, N=1636 (n) MT 4, N=1636 (o) MT 5, N=1636

Fig. 6. Reconstruction of MRI images with hybrid CS. (a-e) Linear reconstructions of five original MRI images that are image
slices of a human head; (f-j) reconstructed images by ST-BCS∗; (k-o) reconstructed images by MT-BCS∗.

3) Still Images from Video Sequence: Figure 7 shows the reconstruction results for Duke Video Images,

which are five snapshots from a web-camera. All five original images have the size 240× 256. We used

a hybrid CS scheme [48] for image reconstruction, with a coarsest scale j0 = 3, and a finest scale j1 = 6

on the “Daubechies 8” wavelet. Figure 6(a-e) show the results of linear reconstruction with N = 4096

samples, which represents the best performance that could be achieved by all the CS implementations

considered here. Figures 6(f-j) have results for the ST-BCS∗ with N = 1717 compressed samples for
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TABLE II
RECONSTRUCTION PERFORMANCES OF LINEAR, ST-CS AND MT-CS ON MRI IMAGES.

Recon. Error Run Time (secs)
Task 1 Task 2 Task 3 Task 4 Task 5 Task 1 Task 2 Task 3 Task 4 Task 5

ST-BCS 0.2838 0.2859 0.2808 0.2943 0.2890 263.41 145.35 150.88 256.01 78.26
MT-BCS 0.2019 0.2019 0.2081 0.2079 0.2191 405.77 per task
ST-BCS∗ 0.2515 0.2531 0.2658 0.2645 0.2744 262.70 387.95 821.45 158.80 498.38
MT-BCS∗ 0.1937 0.1937 0.1998 0.1999 0.2099 332.63 per task
Linear 0.1690 0.1692 0.1777 0.1777 0.1851 0

each task, whereas Figs. 6(k-o) have the results for MT-BCS∗. The full performance comparison between

BCS and BCS∗ is summarized in Table III. Again, the conclusions on the relative performance of the

different algorithms are consistent with those from the examples above.

(a) Linear 1, N=4096 (b) Linear 2, N=4096 (c) Linear 3, N=4096 (d) Linear 4, N=4096 (e) Linear 5, N=4096

(f) ST 1, N=1717 (g) ST 2, N=1717 (h) ST 3, N=1717 (i) ST 4, N=1717 (j) ST 5, N=1717

(k) MT 1, N=1717 (l) MT 2, N=1717 (m) MT 3, N=1717 (n) MT 4, N=1717 (o) MT 5, N=1717

Fig. 7. Reconstruction of video images with hybrid CS. (a-e) Linear reconstructions of five image snapshots from a web-camera;
(f-j) reconstructed images by ST-BCS∗; (k-o) reconstructed images by MT-BCS∗.

In the last set of experiments, we compare the reconstruction errors of OMP and BCS∗ for single-task

(ST) learning and multi-task (MT) learning as a function of number of measurements N on the above

three 2D examples, similar to that performed in Fig. 3. Five methods are considered, including OMP [8],

S-OMP [47], ST-BCS∗, MT-BCS∗ and linear reconstruction (as a baseline performance). The results are
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TABLE III
RECONSTRUCTION PERFORMANCES OF LINEAR, ST-CS AND MT-CS ON VIDEO IMAGES.

Recon. Error Run Time (secs)
Task 1 Task 2 Task 3 Task 4 Task 5 Task 1 Task 2 Task 3 Task 4 Task 5

ST-BCS 0.2217 0.2090 0.2317 0.2059 0.2221 380.69 776.94 351.91 948.72 319.54
MT-BCS 0.1595 0.1531 0.1605 0.1487 0.1643 430.30 per task
ST-BCS∗ 0.2029 0.1993 0.2146 0.1867 0.2080 353.11 328.68 306.40 227.92 529.63
MT-BCS∗ 0.1591 0.1524 0.1601 0.1485 0.1630 240.63 per task
Linear 0.1539 0.1449 0.1518 0.1407 0.1508 0

reported in Fig. 8 for Random-Bars, MRI images and Duke video images, respectively. The improvements

of MT-CS over ST-CS are significant on all the three examples considered, and BCS∗ outperforms OMP

both in ST-CS and MT-CS.
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Fig. 8. Reconstruction errors of OMP and BCS∗ for ST learning and MT learning as a function of increasing N , on (a)
Random-Bars, (b) MRI images, and (c) Duke video images. The results are averaged over 10 runs.

V. RELATED WORK

While our motivation to multi-task CS is mainly from a machine-learning perspective, related research

has been previously studied in signal processing under the name of “Simultaneous Sparse Approximation”

(SSA) [12]–[16] and more recently in compressive sensing with the name “Distributed Compressed

Sensing” (DCS) [18]. Most of these previous work extend the existing algorithms, such as Basis Pursuits

(BP) [7] or Orthogonal Matching Pursuit (OMP) [8], with a variety of strategies for jointly recovering

the nonzero weights. Typical approaches include the S-OMP algorithm in [12], [14], [18], the M-OMP

algorithm in [13], the convex relaxation algorithm in [15], [18], and the M-BP algorithm in [13], among

others. The exhaustive descriptions of these algorithms are beyond the scope of this paper. However, from
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a Bayesian perspective, all these approaches have a similar sharing mechanism that is directed toward

the wavelet coefficients, while our Bayesian approach has a sharing mechanism that is directed toward

the prior on the wavelet coefficients, i.e., one level higher than the previous methods.

Of more particular relevance, the work of Divorra et al. [16] is also related to the multi-task CS

problem considered in this paper. Instead of dealing with the multi-task CS problem directly, Divorra

et al. studied the effect of using a prior knowledge for (single) sparse signal approximation, assuming

that a reliable a priori knowledge about a signal is available. Similar to this paper, their weighted-BPDN

and weighted-MP algorithms are motivated from a Bayesian perspective. However, once their modified

objective functions are therefore formed, the objective functions are again solved in the way similar to

the matching pursuit or convex programming. In comparison, our method is formulated and solved fully

in a Bayesian framework, and we learn knowledge about a signal ensemble automatically and transfer

information among tasks.

As this paper is under review, we also noticed a related approach [17] has just been published. Similar

to our approach, Wipf and Rao [17] also considered an empirical Bayesian strategy for SSA. However,

their approach is an extension of a relatively slower version of the RVM [19] (i.e., the iterative algorithm

in Sec. II-B1), while our algorithm is a fast sequential optimization approach. In addition, we provide a

modified sparse linear-regression model, which marginalizes the noise variance, with improved robustness.

In [17], the authors also provided an extensive performance comparison of their Bayesian approach against

the other approaches (e.g., M-BP and M-OMP, etc.), and the Bayesian approach demonstrated a superior

performance. Although their studies are based on the iterative algorithm of the RVM, these results indeed

shed light on the fast implementation considered in this paper, since both implementations are based on

the same cost function (13) or similarly (30). Nonetheless, more rigorous experimental comparison among

various methods deserves further inquiry. We provided the Matlab code developed in this paper online at

http://www.ece.duke.edu/˜shji/BCS.html, with the hope to make the further comparison

convenient.

VI. CONCLUSIONS

This paper has analyzed the problem of simultaneous inversion of multiple related signals to enhance

the CS reconstructions. Similar problem has been previously studied under the name of “Simultaneous

Sparse Approximation” [12]–[16] or “Distributed Compressed Sensing” [18], while here the application

of multi-task learning to compressive sensing has been examined. Specifically, a hierarchical Bayesian

framework has been introduced to this problem.
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Within this framework, two fast inference algorithms extending the relevance vector machine (RVM)

have been developed. In particular, a method has been introduced whereby the noise variance in the

regression analysis is integrated out analytically. In previous sparse regression analyses of the type

considered here a point estimate for the noise variance has been performed, in a ML/MAP sense, along

with a ML/MAP estimate of the hyperparameters of the sparseness-promoting prior. By integrating out

the noise variance analytically, the associated uncertainty in this parameter is retained throughout, and

the resulting algorithm is more robust with respect to the parameter settings than before. This modified

fast algorithm has been compared with the original fast RVM algorithm [10], [43], and it has been

demonstrated to improve performance, both in single-task and multi-task CS. In fact, the advantages of

this new algorithm were shown to be more pronounced in single-task CS (where CS inversion of each

image is performed independently), with this attributed to the fact that less data are utilized in such cases;

when appropriate, the sharing of data inherent to multi-task learning, between the different tasks, reduces

the amount of data required for any one task, and is likely to improve the accuracy of an ML/MAP

estimate. In addition, a performance comparison between S-OMP [47] and MT-BCS has been presented,

demonstrating superior performance of the Bayesian algorithms.

A significant limitation of the multi-task CS analysis as considered here is the sensitivity of the

wavelet coefficients to shifts in the image. This limitation is manifested because the sharing mechanism,

as implemented, is directed toward the prior on the wavelet coefficients. Consider two images, with

the same basic object (e.g., picture of person) in both images, but the object is significantly shifted in

one image with respect to the other. While a human viewing these two images would be able to share

information by looking at both, the multi-task CS algorithm presented here would not share information,

once the object shift between the two images is sufficient. This suggests that, to generalize the multi-task

CS, the sharing mechanism should not be directly on the wavelet coefficients, but rather imposed at a

higher level. This is an area of open research, but one may conjecture about possible future directions.

For example, rather than placing the shared prior on the wavelet coefficients, one may share a prior on

the statistics of quadtrees [2]. The sharing in this case is imposed not at the wavelet-coefficient level, but

at the quadtree level. Considering the previous example again, the same object shifted within an image

may have similar local quadtree statistics, although the location of the similar quadtrees are shifted within

the image, commensurate with the associated object shift in the original image. Statistical models such

as the hidden Markov tree [49] may be used to model the statistics of the quadtrees, and the multi-task

sharing mechanisms may be implemented using more-sophisticated multi-task learning tools than those

investigated here. For example, the Dirichlet process [50] has proven to be a very effective tool for

August 6, 2008 DRAFT



26

multi-task learning; this type of model is also within the hierarchical Bayesian family, but with far more

sophistication and generality than that considered here. Future research may be considered to extend

these techniques to multi-task CS with emphasis on computational efficiency and sparse solutions.

APPENDIX A

PROPERTIES OF MARGINAL LIKELIHOOD FUNCTIONS

Some properties of the marginal likelihood functions in (20) and (36) with respect to their approximate

solutions are analyzed in this section. A rigorous analysis for L = 1 is provided in [51]. However, when

L > 1, the analysis becomes very complicated due to the combinatory structure of these objective

functions. Therefore, in the following, our analysis is based on the approximation that αj ¿ si,j , which

has generally been found to be valid numerically, and typically si,j > 20αj . Although the analysis and

the algorithms are developed under this approximation, in practice we did not encounter any problem

due to this approximation, except that the algorithms more likely converge to a suboptimal solution.9

For the marginal likelihood function in (20), we compute the first derivative of L(α, α0) with respect

to αj , which, under the condition of αj ¿ si,j , can be expressed approximately as

∂L(α, α0)
∂αj

=
∂`(αj)
∂αj

≈ L

2αj
−

L∑

i=1

q2
i,j − si,j

2s2
i,j

, (46)

and similarly, for the second derivative of L(α, α0) with respect to αj , we have

∂2L(α, α0)
∂α2

j

≈ − L

2α2
j

, (47)

which is always non-positive. For the case of the finite αj given by (23), (47) is negative, and therefore

`(αj) must have a unique maximum at this approximate solution. However, this is achieved under the

approximation that αj ¿ si,j . In reality, without this approximation, the exact solving of (22) may yield

two or more positive solutions of αj , one of which is observed relatively close to the approximate solution

given by (23). Therefore, (23) must be at the vicinity of a stationary point of `(αj , α0), which may only

correspond to a local maximum of `(αj , α0).

Similarly, for the marginal likelihood function in (36), under the condition of αj ¿ si,j , the first and

9Another reason for the suboptimal solution is due to the greedy property of the algorithm, including the case when L = 1.
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second derivatives of L(α) with respect to αj , can be expressed, respectively, as

∂L(α)
∂αj

≈ L

2αj
−

L∑

i=1

(Ni + 2a)q2
i,j/gi,j − si,j

2si,j(si,j − q2
i,j/gi,j)

, (48)

∂2L(α)
∂α2

j

≈ − L

2α2
j

. (49)

Following the same analysis as above, the approximate solution given by (39) must be at the vicinity of

a stationary point of `(αj), which may correspond to a local maximum of `(αj).

APPENDIX B

EFFICIENT CALCULATIONS FOR SEQUENTIAL OPTIMIZATION

In the implementation of the fast algorithm in Sec. III-B2, it is necessary to recompute Σi, µi, and

all quantities si,j , qi,j and gi,j . For the sequential nature of the fast algorithm, these quantities can be

calculated iteratively. In addition, we must calculate the increase or decrease of the marginal likelihood

L(α) =
∑L

i=1 Li(α) according to which basis functions are added, deleted or re-estimated. Efficient

calculations of these quantities are given below.

A. Notation

The fast algorithm operates in a constructive manner, i.e., at each step t it may add a basis to the

model, or delete a basis from the model, or re-estimate the parameters of the model. Therefore, Φi as

used below need only comprise columns of included basis functions. Denote the number of the basis

functions in Φi at step t as Mt, so Φi is of size Ni×Mt. Similarly, Σi and µi are computed only for the

“current” basis and therefore are of order Mt (all other entries in the “full” version of Σi and µi would

be zero). The integer j ∈ {1, 2, . . . , M} is used to index the single basis function for which αj is to be

updated, and the integer k ∈ {1, 2, . . . , Mt} to denote the index within the current basis that corresponds

to j. The index l ∈ {1, 2, . . . , M} ranges over all basis functions, including those not currently utilized

in the model. For convenience, define Ki = Ni +2a. Updated quantities are denoted by a tilde (e.g., α̃i).
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B. Adding a new basis function

2∆Li = log
αj

αj + si,j
−Ki log

(
1− q2

i,j/gi,j

αj + si,j

)
, (50)

Σ̃i =


 Σi + Σi,(jj)ΣiΦT

i Φi,jΦT
i,jΦiΣi −Σi,(jj)ΣiΦT

i Φi,j

−Σi,(jj)(ΣiΦT
i Φi,j)T Σi,(jj)


 , (51)

µ̃i =


 µi − µi,jΣiΦT

i Φi,j

µi,j


 , (52)

S̃i,l = Si,l − Σi,(jj)(Φ
T
i,lei,j)2, (53)

Q̃i,l = Qi,l − µi,j(ΦT
i,lei,j), (54)

G̃i = Gi − Σi,(jj)(v
T
i ei,j)2. (55)

where Σi,(jj) = (αi,j + Si,j)−1 is the jth diagonal element of Σi, µi,j = Σi,(jj)Qi,j and we define

ei,j , Φi,j −ΦiΣiΦT
i Φi,j .

C. Re-estimating a basis function

2∆Li = (Ki − 1) log(1 + Si,j(α̃−1
j − α−1

j )) + Ki log
[(αj + si,j)gi,j − q2

i,j ]α̃j

[(α̃j + si,j)gi,j − q2
i,j ]αj

, (56)

Σ̃i = Σi − γi,kΣi,kΣT
i,k, (57)

µ̃i = µi − γi,kµi,kΣi,k, (58)

S̃i,l = Si,l + γi,k(ΣT
i,kΦ

T
i Φi,l)2, (59)

Q̃i,l = Qi,l + γi,kµi,k(Σ
T
i,kΦ

T
i Φi,l), (60)

G̃i = Gi + γi,k(ΣT
i,kΦ

T
i vi)2. (61)

where Σi,k as the kth column of Σi, and we define γi,k , (Σi,(kk) + (α̃j − αj)−1)−1.
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D. Deleting a basis function

2∆Li = −Ki log

(
1 +

Q2
i,j/Gi

αj − Si,j

)
− log

(
1− Si,j

αj

)
, (62)

Σ̃i = Σi − 1
Σi,(kk)

Σi,kΣT
i,k, (63)

µ̃i = µi −
µi,k

Σi,(kk)
Σi,k, (64)

S̃i,l = Si,l +
1

Σi,(kk)
(ΣT

i,kΦ
T
i Φi,l)2, (65)

Q̃i,l = Qi,l +
µi,k

Σi,(kk)
(ΣT

i,kΦ
T
i Φi,l), (66)

G̃i = Gi +
1

Σi,(kk)
(ΣT

i,kΦ
T
i vi)2. (67)

Following updates (63) and (64), the appropriate row and/or column k is removed from Σ̃i and µ̃i.
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