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Abstract

We consider the problem of a robotic sensing system nav-
igating in a minefield, with the goal of detecting potential
mines at low false alarm rates. Two types of sensors are
used, namely, electromagnetic induction (EMI) and ground-
penetrating radar (GPR). A partially observable Markov deci-
sion process (POMDP) is used as the decision framework for
the minefield problem. The POMDP model is trained with
physics-based features of various mines and clutters of in-
terest. The training data are assumed sufficient to produce a
reasonably good model. We give a detailed description of the
POMDP formulation for the minefield problem and provide
example results based on measured EMI and GPR data.

Introduction
In many sensing problems, a robotic platform is preferred
to a humanly-operated platform, an important example be-
ing that of ground-based sensing of landmines (MacDon-
ald 2003). The robotic platform navigates in a minefield
in an autonomous fashion, with optimal decisions dynami-
cally made for its position, orientation, and the deployment
of multiple sensors. The decision optimization is based on
minimizing two fundamental types of costs in landmine de-
tection: the detection cost and the sensing cost.

The landmines and mine-like clutter vary considerably in
their contents (metal, plastic, etc) and size (small, large, etc),
therefore it is vital to build a unified model to represent the
mines and clutter so as to make the decision making possi-
ble. There are several typical sensors used in landmine de-
tection, including ground-penetrating radar (GPR) and elec-
tromagnetic induction (EMI) sensor, which we consider in
the present paper.

The minefield problem may be cast in the form of an adap-
tive sensor-management problem (Kastella 1997; Abdel-
Samad & Tewfik 1999) (here with two sensors, the GPR
and EMI sensors), though the problem is complicated sig-
nificantly by the variety of the landmine and clutter signa-
tures. We here consider a partially observable Markov de-
cision process (POMDP) formalism (Kaelbling, Littman, &
Cassandra 1998). In the POMDP formulation the environ-
ment under test is assumed to reside within a particular state
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SE , and this state is not observable directly; the state of the
environment, defined by the presence/absence of a mine in
the region being sensed, is unchanged by the sensing itself.
The state SE is partially observable, in the form of the mea-
sured sensor data. The agent has particular actions at its
disposal, including “moving to a new location”, “deploying
one of the sensors”, “declaring the presence or absence of
landmines’. Each of these actions has an expected immedi-
ate cost, as well as an impact on the long-term sensing cost.
The POMDP constitutes a framework that balances the (dis-
counted) infinite-horizon performance of this multi-sensor
problem, i.e., it accounts for the immediate expected cost,
as well as discounted future costs, over an infinite horizon
(Kaelbling, Littman, & Cassandra 1998).

The POMDP is employed to constitute a sensing pol-
icy, defining the optimal next action to take based upon
the agent’s current belief about the environment under test
(Kaelbling, Littman, & Cassandra 1998). The belief is de-
fined in terms of a belief state, a probability mass function
(pmf) of the environmental states SE , conditional on all pre-
vious actions and observations (Kaelbling, Littman, & Cas-
sandra 1998). To compute the belief state one requires an
underlying model of the environment under test (Kaelbling,
Littman, & Cassandra 1998), characterized by a statistical
representation of observations given a sequence of control-
ling actions. We assume that we have access to a sufficient
ensemble of measured data collected by the GPR and EMI
sensors of the mines and mine-like clutter, so that we can
design the POMDP model and find the corresponding opti-
mal policy. The target states ST of the POMDP are defined
by sensor positions relative to the target, and the sequence
of target states visited is modeled as a Markov process, con-
ditioned on the sensor-platform motion; since the target po-
sition is unknown (hidden), the state is partially observable.
In this setting we must distinguish the overarching state of
the environment under test SE , which is to be inferred by the
POMDP policy (via the belief state), vis-a-vis the states of
the underlying target model ST , which are visited when per-
forming the adaptive sensing. Given a set of GPR and EMI
data, measured at a sequence of spatial positions relative to
the target, we must now develop the POMDP model.

In this paper we develop a POMDP formulation based on
the assumption that a priori and adequate training data are
available for model development. We here employ measured



GPR and EMI data, for real mines and realistic clutter. The
measured data considered in this study are available upon
request, and therefore it is hoped that it will evolve to a stan-
dard data set researchers may use to test different adaptive
sensor-management algorithms.

Partially Observable Markov Decision
Processes

A POMDP model is represented by a six-element tuple
〈S, A, T, Ω, O, R〉, where S is a finite set of discrete states,
A is a finite set of discrete actions, and Ω is a finite set of
discrete observations. The state-transition probability

T (s, a, s′) = Pr(St+1 = s′|St = s, At = a) (1)

describes the probability of transitioning from state s to state
s′ when taking action a. The observation function

O(a, s′, o) = Pr(Ot+1 = o|At = a, St+1 = s′) (2)

describes the probability of sensing observation o after tak-
ing action a and transiting to state s′. Finally, the reward
function R(s, a) represents the immediate expected reward
the agent receives by taking action a in state s.

Since the state is not observed directly, a belief state b
is introduced. The belief state is a probability distribution
over all states, representing the agent’s probability of being
in each of the states based on past actions and observations,
assuming access to the correct underlying model. The belief
state is updated by Bayes rule after each action and observa-
tion, based on the previous belief state:

bt(s′) =
1
c
O(a, s′, o)

∑

s∈S

T (s, a, s′)bt−1(s) (3)

with the normalizing constant

c =
∑

s′∈S

O(a, s′, o)
∑

s∈S

T (s, a, s′)bt−1(s) = Pr(o|a, b) (4)

A POMDP policy is a mapping from belief states to ac-
tions, telling the agent which action to take based on the
current belief state. The goal of the POMDP is to find an
optimal policy by maximizing the expected discounted re-
ward

V = E[
k−1∑
t=0

γtR(st, at)] (5)

which is accrued over a horizon of length k. The discount
factor γ ∈ (0, 1] describes the degree to which future re-
wards are discounted relative to immediate rewards. If k is
finite the optimal action depends on the distance from the
horizon, and therefore the policy is termed non-stationary.
However, often an appropriate k is not known, so we may
consider an infinite-horizon policy, i.e., k goes to infinity,
for which we require γ < 1. An infinite horizon also im-
plies a stationary policy, independent of the agent’s temporal
position.

When in belief state b, the maximum expected reward k
steps from the horizon V (k) is

V (k)(b)

= max
a∈A

[∑
s

R(s, a)b(s) + γ
∑

o

p(o|a, b)V (k−1)(bo
a)

]
(6)

where bo
a the belief state after the agent takes action a and

observes o, as updated in (5). The V (k)(b) represents the
maximum expected discounted reward the agent will receive
if it is in belief state b and takes actions according to the
optimal policy for future steps. In this paper policy design is
performed using the PBVI algorithm, with details provided
in (Pineau, Gordon, & Thrun 2003).

The POMDP Model for Landmine Detection
We consider a minefield as an area of land where mines of
several known types and other mine-like objects (clutter) are
buried underground. The positions of the mines and clutter
are unknown. The task is to detect the mines at a low false
alarm rate, with an economic use of sensors. This is a highly
dangerous task and therefore a robot platform is designed to
perform it. Below we specify the POMDP model for this
problem.

Feature extraction
The EMI measurement in any position is the complex re-
sponse of the magnetic field as a function of frequency. A
typical EMI response when the sensor is above a metal mine
is shown in Figure 1. The magnetic field induced by a target
is represented by the formula (Gadar, Mystkowski, & Zhao
2001)

H(ω) ∝ a +
b1ω

ω − jω1
+

b2ω

ω − jω2
(7)

where a, b1, b2 are related to the magnetic dipole mo-
ments of the target, and ω1 and ω2 represent the associ-
ated EMI resonant frequencies. Features can be extracted
from an EMI observation by fitting the measured data to the
model in (7), assuming additive noise n in the observation,
i.e.,Y (ω) = H(ω) + n . The nonlinear fitting parameters
{a, b1, b2, ω1, ω2} are our EMI features.

The GPR observation for a given position is recorded as
the radar signature as a function of time. The time dimen-
sion is associated with the depth of the soil: the signals re-
flected from deeper positions have larger time delays. Fig-
ure 2(a) shows a typical GPR observation when the sensor
is above a plastic mine, and Figure 2(b) is a 2-dimensional
scan of the landmine signature. Features extracted from a
GPR observation include the raw moments (corresponding
to energy features) and central moments (corresponding to
variance features) of the time series.

Specification of S, A, Ω, and R(s, a)
The landmine detection problem can be viewed as a gener-
alization of the tiger problem (Kaelbling, Littman, & Cas-
sandra 1998). Each mine type represents a type of tiger,
and each clutter type represents a type of non-tiger (reward).
The robot can observe sensor readings (listening in the tiger
problem) to gain information or make a declaration with
regard to the presence or absence of a mine (opening the
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Figure 1: EMI response and model fit when the sensor is
above a metal mine.
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Figure 2: The GPR response when the sensor is above a
plastic mine. (a) Amplitude vs. time signal in one position.
Units in time are 0.05 ns. The first peak corresponds to the
reflection from the ground surface. (b) 2-dimensional scan
of a plastic mine signature. Units in down-track position
are 2 cm. The arrow indicates the position where a sensor
measures the signal in (a).

door in the tiger problem) to complete the present detection
phase. When learning the policy, the problem resets imme-
diately after a declaration is made, and a mine or clutter is
randomly presented to the robot. This corresponds to the
robot randomly encountering a mine or clutter in the next
detection phase.

Across all five types of mines and clutter considered, we
define a total of 29 states, i.e. S = {1, 2, · · · , 29}. The 29
states are divided into 5 disjoint subsets: S = Sm∪Sp∪Sc1∪
Sc2 ∪ Sc0 , denoting metal mine, plastic mine, Type-1 clut-
ter (large-sized), Type-2 clutter (small-sized), and “clean”,
respectively. The number of states in each of the five sub-
sets are 9, 9, 9, 1, and 1, respectively. The multiple states
of metal mine, plastic mine, Type-1 clutter represent their
respective 9 annulus sectors. Definition of the states is illus-
trated in Figure 3(a).

In most cases, a mine and clutter is cylindrically symmet-
ric and is buried with its axis perpendicular to the ground
surface. This implies that the robot will not distinguish states
1, 2, 3, 4 (which are approximately equidistant to the metal

mine) by observing a single sensor reading in each respec-
tive state. However, by remembering its past observations
and actions, the robot will be able to tell apart these ambigu-
ous states.

The robot has 15 possible actions, i.e., A =
{1, 2, · · · , 15}, of which the first 10 are sensing actions and
the rest are declaration actions. Each sensing action has the
format of “move and then sense”, where move ∈ {stay,
walk south, walk north, walk east, walk west} and sense ∈
{sense with EMI, sense with GPR}, with EMI representing
an electromagnetic induction sensor and GPR a ground pen-
etrating radar. Of the 5 declaration actions, one declares the
present sub-area (where the robot currently is) to be “clean”,
and four respectively declare that there is a “metal mine”,
“plastic mine”, “Type-1 clutter”, or “Type-2 clutter” buried
beneath the present sub-area.

The set of possible observation Ω is obtained as the code-
book resulting from vector quantization (Gersho & Gray
1992) of the continuous sensor signatures. Each of the two
sensors, EMI and GPR, generates its own codebook inde-
pendently, resulting in two disjoint codebooks, which are
taken a union over to produce Ω.

The reward function R(s, a) is specified as follows. De-
note by m any of the 9 states for a metal mine, by p any of the
9 states for a plastic mine, and by c1 any of the 9 states for
a Type-1 clutter. Denote by c2 the Type-2 clutter and by c0

the “clean” state. See Figure 3(a) for definition of the states.
Denote by At the action of declaring the present sub-area to
be the state of t. Then R(s = t, a = At) = 10, for t = m,
p, c1, c2, or c0; R(s = m or p, a = Ac1 or Ac2 or Ac0) =
−100; R(s = c1 or c2 or c0, a = Am or Ap) = −50;
R(s = m, a = Ap) = 5; R(s = p, a = Am) = 5. All
the remaining entries of R(s, a) are zero.

Estimation of T (s, a, s′) and O(a, s′, o)
The two sensing actions involving “stay” do not cause state
transitions, hence T (s, a, s′) is an identity matrix when a is
“stay and sense with GPR” or “stay and sense with EMI”.
All remaining sensing actions can result in transitions from
one state to another. Assuming that the robot travels the
same distance in each step and that the robot’s position is
uniformly distributed in any given state, the probabilities of
these transitions are easily determined by using an elemen-
tary geometric probability computation. Figure 3(b) illus-
trates how the transition probabilities for the two sensing
actions involving “walk south” are computed.

Computing T (s, a, s′) and O(a, s′, o) requires prior
knowledge of the possible mines and clutters. This poses no
problem here, as we have the templates of the possible mines
and clutter, which can be employed to compute T (s, a, s′)
as well as collecting the training signatures for estimating
O(a, s′, o).

Experimental Results
We consider a robot navigating in three simulated mine
fields. The EMI and GPR data are pre-collected over a
1.6× 1.6 m2 per simulated mine field, with sensor data col-
lected at a 2 cm sample rate in two coordinate dimensions.
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Figure 3: (a) Definition of the states for the minefiel navigation problem. Metal mine, plastic mine, and Type-1 clutter (large-
sized) are each modeled by 9 states, indexed 1 to 9, 10 to 18, and 19 to 27, respectively; Type-2 clutter (small-sized) is modelled
by a single state (state 28); state 29 is used to indicate “clean” (i.e., there are no mine or mine-like objects buried underground).
(b) Illustration of the geometric method in computing the state transition probabilities T (s, a, s′) when a is one of the two
sensing actions involving “walk south”. It is assumed that the robot travels the same distance in each step and that the robot’s
position is uniformly distributed in any given state.

The pre-collected data are used to simulate the data collected
by an autonomous two-sensor agent, as it senses within the
mine field. The first simulated mine field is shown in Figure
6.

Clearly, to avoid missing landmines the robot should
search almost everywhere in a given mine field. However,
we hope that the robot can actively decide where to sense as
well as which sensor to use, to minimize the detection cost.
Considering these two requirements together, we assign a
basic path as shown in Figure 4 (dark blue curve with ar-
rows). The basic path defines the lanes as indicated by light
blue in the figure, and the robot is restricted to move along
the lanes by taking actions within the lanes. The basic path
restrains the robot from moving across the lanes, and the
robot defines sectors along each lane as being characterized
by one of the mines/clutter, including clean, while moving
in an overall direction consistent with the arrows in Figure
4. The distance between two neighboring basic paths should
be less than the diameter of a landmine signature.

It is possible that after many measurements in one local
area, the agent still cannot make a declaration. For example,
this can occur if the model we build does not fit the data
in this area, possibly because our model does not include
the current underground target. More measurements do not
help to make a better decision. If this happens, it is better
to say “I do not know” rather than continue sensing or make
a reluctant declaration. We let the robot declare unknown
in this situation, while in the lifelong learning algorithm the
oracle is employed.

In the offline-learning approach the training data are given

Figure 4: Robot navigation path in a mine field. The dark
blue curve is the basic path, which defines the lanes as in-
dicated by light blue. The robot is restricted to move along
the lanes by taking actions within the lanes. The basic path
restrains the robot from moving across the lanes.

in advance, and the training phase and test phase are sepa-
rate. We use Mine Field 1 (Figure 6) as the training data to
learn the model and the policy, and then test our method on
all three mine fields. The training data and test data match
well in that the three mine fields contain almost the same
types of metal mines, plastic mines and clutter. The clut-
ter includes metal clutter (soda can, shell, nail, coin, screw,
lead, rod, and ball bearing) and nonmetal clutter (rock, bag
of wet sand, bag of dry sand, and a CD).
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Figure 5: Detection performance as a function of number of iterations when learning the policy. (a) Number of total sensing
actions. (b) Correct declaration rate.

Table 1: Detection results on three mine fields
Mine Field 1 Mine Field 2 Mine Field 3

Ground truth Number of mines (metal+plastic) 5 (3+2) 7 (4+3) 7 (4+3)
Number of clutter (metal+nonmetal) 21 (18+3) 57 (34+23) 29 (23+6)

Detection result Number of mines missed 1 1 2
Number of mines missed 2 2 2

Model training and policy design
Using Mine Field 1 as the training data set the POMDP
model is built and the policy is learned by PBVI. The num-
ber of sensing actions and the correct declaration rate as a
function of iteration number when determining the policy
are plotted in Figure 5. The correct declaration rate is de-
fined as the ratio of the number of correct declarations rela-
tive to the number of all declarations. Note that the correct
rate is not equivalent to probability of detection since one
landmine could be declared multiple times, and the correct
declaration of clutter or clean is also counted in the correct
rate. However, it does reflect the detection performance by
comparing declaration position and ground truth. From Fig-
ure 5, after 75 iterations and five belief expansion phases,
the PBVI-learned policy becomes stable.

Landmine detection results
The stationary policy from the last subsection is then used
to navigate the robot in three simulated mine fields. The
ground truth and detection results are summarized in Table
1. As an example, the layout of Mine Field 1, the declaration
result and a zoom-in of sensor choices are shown in Figure
6. Note that one target may be declared several times.

Missed landmines are usually caused by one of the fol-
lowing two reasons: the mine has very weak signal in both
EMI and GPP responses, such as a small anti-personnel
mine, which is a low-metal content mine; or the mine is
very close to some large metal clutter, so that the clutters
strong response hides the weak signal of the mine. From
Figure 6(c), we see that the policy selects GPR sensors to
interrogate plastic mines, while it prefers EMI sensors when
metal mines are present. This verifies the policy to some

degree since the EMI sensor is almost useless for detecting
plastic mines, but is good for detecting metal mines. We
also see that on the clean area or at the center of a land-
mine, a declaration is made only based on very few sensing
actions, usually two or three, since it is relatively easy for
the robot to estimate its current states. However, at the edge
of a landmine, where there is an interface between two ob-
jects (the landmine and the clean), the robot usually requires
many Number of total sensing actions sensing actions to
make a declaration. The robot requires, on average, approx-
imately 4500 sensing actions in one mine field; the correct
declaration rate is about 0.87 (see Figure 5). As a compari-
son, if a myopic policy is applied, where the agent considers
only one step ahead to select actions, a total of around 8000
sensing actions are needed, and a correct declaration rate
of 0.82 is achieved. Note that if one senses on every grid
point using both sensors, the total number of measurements
is 2× 8002 = 12800.

Conclusions
We have addressed the problem of employing ground-
penetrating radar (GPR) and electromagnetic induction
(EMI) sensors placed on a single platform, with the ob-
jective of performing adaptive and autonomous sensing of
landmines. The problem has been formulated in a partially
observable Markov decision process (POMDP) setting, un-
der the assumption that adequate and appropriate data are
available for learning the underlying POMDP models, with
which policy design can be effected. The algorithm has been
tested, with encouraging performance, on measured EMI
and GPR data from simulated mine fields.

The assumption that adequate training data are available
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Figure 6: Ground truth and detection details in Mine Field 1. (a) Ground truth. The red circles are landmines, with ”M” and ”P”
indicating metal mine and plastic mine, respectively; the other symbols represent clutter. Black dots are small metal segments
and the rest are large-sized metal or nonmetal clutter. (b) Declaration result. The blue ”C” means a declaration of ”clean”, the
green ”?” means ”unknown”, and the stars with various colors represent declarations of mines or clutter. Red star: metal mine;
pink star: plastic mine; yellow star: Type-1 clutter; cyan star: Type-2 clutter. (c) Sensor choice in the broken-lined rectangular
area shown in (b). The black square means sensing with EMI sensor and the green circle means GPR sensor. It can be seen that
the policy prefers the GPR sensor for plastic mine (left half in (c)) and the EMI sensor for metal mine (right half in (c)).

is often inappropriate, and therefore in the next phase of
this work we will consider a lifelong-learning algorithm in
which little if any a priori information is assumed with re-
gard to the mines, clutter and soil conditions. The formu-
lation considered for this latter case will be based on the
recently developed MEDUSA algorithm (Jaulmes, Pineau,
& Precup 2005).
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