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Abstract

There are many sensing challenges for which one must balance the effectiveness of a
given measurement with the associated sensing cost. For example, when performing
a diagnosis a doctor must balance the cost and benefit of a given test (measure-
ment), and the decision to stop sensing (stop performing tests) must account for
the risk to the patient and doctor (malpractice) for a given diagnosis based on
observed data. This motivates a cost-sensitive classification problem in which the
features (sensing results) are not given a priori ; the algorithm determines which
features to acquire next, as well as when to stop sensing and make a classifica-
tion decision based on previous observations (accounting for the costs of various
types of errors, as well as the rewards of being correct). We formally define the
cost-sensitive classification problem and solve it via a partially observable Markov
decision process (POMDP). While the POMDP constitutes an intuitively appealing
formulation, the intrinsic properties of classification tasks resist application of it to
this problem. We circumvent the difficulties of the POMDP via a myopic approach,
with an adaptive stopping criterion linked to the standard POMDP. The myopic
algorithm is computationally feasible, easily handles continuous features, and seam-
lessly avoids repeated actions. Experiments with several benchmark datasets show
that the proposed method yields state-of-the-art performance, and importantly our
method uses only a small fraction of the features that are generally used in com-
petitive approaches.

Key words: Cost-sensitive classification, Partially observable Markov decision
processes (POMDP), Hidden Markov models (HMMs), Variational Bayes (VB)

1 Introduction

A classifier is a function that maps a feature vector into a class label. Many
traditional classifiers are “passive”, in that they assume a feature vector is
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given, ignoring the potential advantage of endowing the classifier with an
active information-gathering function to acquire features. Furthermore, a tra-
ditional classifier is considered good if it assigns the class label correctly for
as many examples as possible. This performance measure is too simplistic for
many classification domains, in which one must balance the accuracy of a given
classifier against the cost of acquiring the data. Medical diagnosis [1,2] may be
the most ubiquitous scenario motivating the ideas considered here. In medical
diagnosis, a doctor typically takes a few measurements (tests) on a given pa-
tient to determine the patient’s health status. The measurements are usually
taken sequentially, with low-cost measurements performed initially, followed if
necessary by more costly and specialized measurements. At each step the doc-
tor analyses the results obtained from previous tests and determines whether
a further test (and which type of test) is required to gather more information;
the doctor may also decide to terminate the sensing (tests) and make a final
classification decision (diagnosis). Each test has an associated cost, and there
are also costs/rewards associated with different diagnoses. The doctor would
like to balance the cost of gathering additional information against the costs
of a false diagnosis (and the rewards, or negative costs, of a correct diagnosis).
An algorithm that can guide the active acquisition of information and balance
the costs is often termed a cost-sensitive classifier [1].

Both generative and discriminative models [3] may be used to learn the map-
ping of a feature vector to a class label. Generative models estimate the joint
probability of feature vectors and the class label. By incorporating prior do-
main knowledge, Bayes rule is applied to infer the posterior distribution of
class labels after observing data. In contrast, discriminative classifiers esti-
mate the conditional probability of the class label directly, partitioning the
feature space into regions corresponding to different classes. Although discrim-
inative models are often more robust than generative models [3], generative
classifiers may be more suitable for cost-sensitive classification. Example ad-
vantages of generative classifiers are: (i) a direct means of incorporating prior
domain knowledge, (ii) a direct integration into cost-reward algorithms such
as POMDPs [4], and (iii) an iterative update of the posterior distribution as
more features are added sequentially. These factors drive our use of generative
models and classifiers in the analysis that follows.

Bayesian networks and their simplest form - naive Bayes - have been investi-
gated in previous research on cost-sensitive classification [5, 6]. However, this
previous work ignores the temporal information as the features (observations)
are acquired in a sequential manner. We here use a hidden Markov model
(HMM), allowing explicit consideration of the sequential order in which the
observations are made. In the analysis that follows we motivate the meaning
of the underlying HMM states, these distinct from the states associated with
previous HMM applications, such as speech recognition [7] and bioinformat-
ics [8].
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The class-dependent HMM formulation can be integrated into the partially
observable Markov decision process (POMDP). In [6], a related POMPD for-
mulation has been considered for cost-sensitive classification. However, in that
case each class is represented by a single POMDP state, under a naive Bayes
assumption. Our formulation relaxes this strong assumption and generalizes
to a more formal POMDP setting, in which the feature dependency is explic-
itly encoded by the hidden states of the HMM. We note that for a one-state
HMM, our formulation degenerates to naive Bayes as in [6].

While the POMDP constitutes an intuitively appealing formulation, the in-
trinsic properties of classification tasks resist application of a POMDP to this
problem. At least three factors restrict its use : (i) significant computational
requirements, (ii) the difficulty of handling continuous features (observations),
and (iii) the repeated actions that are permissible in a standard POMDP are
often undesirable in classification problems (i.e., we often do not wish to repeat
medical tests). We circumvent the difficulties of the POMDP via a myopic ap-
proach, with an adaptive stopping criterion linked to the standard POMDP.
The myopic algorithm is computationally feasible, easily handles continuous
features, and seamlessly avoids repeated actions. Experiments with several
benchmark datasets show that the proposed method yields state-of-the-art
performance, and importantly our method uses only a small fraction of the
features that are generally used in competitive approaches.

The remainder of the paper is organized as follows. In Sec. 2 the formal def-
inition of the cost-sensitive classification problem is presented, and we ex-
plain why an HMM formulation is appropriate, with HMM parameter learning
and variational Bayes model selection techniques discussed in the Appendix.
In Sec. 3 we map the cost-sensitive classification problem into a POMDP
framework. Following the discussion of the advantages and limitations of this
POMDP setting, an alterative myopic solution is addressed in Sec. 4. We
present experimental results on several benchmark datasets in Sec. 5, followed
in Sec. 6 by conclusions and a discussion of future work.

2 Bayesian Cost-Sensitive Classification

2.1 Probabilistic modeling of feature acquisition process

Assume a d-dimensional feature vector is represented as (x1, x2, · · · , xd), where
xi represents the value of the ith feature. We wish to consider the problem for
which features are measured sequentially, and depending on the attendant risk
and sensing costs a final classification decision may be made without collecting
all features. It is here assumed that each measurement is characterized by a
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single real number (feature); we may readily extend this to address problems
for which a measurement is characterized by a feature vector.

Let Af = {ρ1, ρ1, · · · , ρd} denote a set of feature-acquisition actions, with ρi

representing the action of measuring the ith feature. We may then use the pair
(at = ρi, ot = xi) to represent that at time t the corresponding action at queries
the ith feature, and the subsequent observation ot has value xi. Therefore,
acquisition of T features may be expressed as (a1, o1), (a2, o2), · · · , (aT , oT ),
and T = d if all features are collected (but often T < d). Taking into account
the order in which the features are acquired, there are d!/(d − T )! different
ways T ≤ d measurements may be performed.

To motivate the HMM modeling of a feature-acquisition process, we assume
that each feature is modeled as a Gaussian mixture model (GMM), with the
marginal probability of feature xi represented as

p(xi) =
Mi∑

mi=1

αi,mi
N (xi|µi,mi

, Γi,mi
) (1)

where Mi denotes the number of mixture components for the ith feature,
αi,mi

is the mixing coefficient for the mi-th component, with 0 ≤ αi,mi
≤ 1

and
∑Mi

mi=1 αi,mi
= 1; and µi,mi

and Γi,mi
respectively represent the associated

mean and precision (inverse variance).

The process of performing a sequence of measurements and observations (a1, o1),
(a2, o2), · · · , (aT , oT ) may be described as follows. Assume that the first action
a1 corresponds to measuring feature i ∈ {1, 2, · · · , d}. The associated observa-
tion o1 is realized by first selecting a mixture component mi ∈ {1, 2, · · · ,Mi},
based on the probabilities {αi,1, αi,2, · · · , αi,Mi

}. Once mixture component mi

is so selected, the associated feature xi is realized with probabilityN (xi|µi,mi
, Γi,mi

).
Now assume action a2 corresponds to measuring feature j ∈ {1, 2, · · · , d}, with
j 6= i. The joint probability is then represented as

p(xi, xj) = p(xi)p(xj|xi) = p(xj|xi)
Mi∑

mi=1

αi,mi
N (xi|µi,mi

, Γi,mi
) (2)

We again employ a GMM for feature j

p(xj) =
Mj∑

mj=1

αj,mj
N (xj|µj,mj

, Γj,mj
) (3)

and use p(mj|mi) to represent the probability of observing mixture compo-
nent mj for feature j when component mi was used for component i. If the
sampled mixture components satisfy a Markovian assumption, and feature xj

is conditionally independent given the associated mixture component, then we
have
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Fig. 1. A graphical representation of IOHMM modeling of a feature acquisition
process for a given class, where st, at and ot denote the state, action and observation
at the time step t, respectively.

p(xi, xj) = p(xi)p(xj|xi)

=
Mj∑

mj=1

Mi∑

mi=1

αi,mi
N (xi|µi,mi

, Γi,mi
)p(mj|mi)N (xj|µj,mj

, Γj,mj
) (4)

This process may be continued for the T ≤ d sequential measurements that
may be performed, motivating an HMM in which the underlying states are
tied to mixture components associated with particular features, and the state-
transition probabilities are tied to the probability of sampling mixture com-
ponent mj for feature j when feature component mi was sampled for feature
i, i.e., p(mj|mi). The underlying sequence of sampled states (mixture compo-
nents) is modeled via a Markov process, but these are unobservable − we only
observe the measured features, this motivating the hidden Markov model. We
also note that any mixture model may have been employed above, not just a
GMM.

We formally define the HMM modeling motivated above with an n-state 1

HMM with the parameters θ = {π, τ, φ}, where πs is the initial state dis-
tribution, τa

s,s′ := p(st = s′|st−1 = s, at = a) is the state-transition function
representing the probability of transitioning from state s to state s′ given ac-
tion a, and φs,o := p(ot = o|st = s) is the observation function describing the
probability of observing o from state s. We note that this HMM modeling of
a feature acquisition process is a generalization of the Input-Output Hidden
Markov Model (IOHMM) [9], an extension of the standard HMM by allow-
ing for transition probabilities between states conditioned by the actions. In
our model, actions drive transition probabilities between states and we model
observations for every state in the IOHMM (see Fig. 1).

With the HMM parameters θ defined above, the probability of observing

1 n is often less than the total number of mixture components over all the features.
This indicates that some states are shared among different features if these features
have some overlap in feature space.
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(o1, o2, · · · , oT ) for a given action sequence (a1, a2, · · · , aT ) is expressed as

p(o1, o2, · · · , oT |a1, a2, · · · , aT , θ) =
∑

s0,··· ,sT

πs0

T∏

t=1

τat
st−1,st

T∏

t=1

φst,ot (5)

Although the underlying state sequence forms a first-order Markovian process,
the observations are not Markovian; the dependencies among the observations
are explicitly encoded by the hidden states. If we use a one-state HMM, (5)
degenerates to a naive Bayes model, with the result

p(o1, o2, · · · , oT |a1, a2, · · · , aT , θ) =
T∏

t=1

φot (6)

where φo represents the probability of observing o when querying features
from the class parameterized by θ. In this case, the time index in (6) becomes
meaningless and all the features are assumed to be independent of each other
given the class label.

The HMM parameter θ employed here is trained using a variational Bayes
(VB) procedure [10, 11], as discussed in the Appendix. In addition, the VB
procedure allows model selection, where here this entails choosing the proper
number of HMM states for a given class. Model selection based on the VB
analysis is also discussed in the Appendix.

2.2 Bayesian HMM classifier

Now consider a classification problem in which a feature vector is mapped
into a class label from a finite set C = {1, 2, · · · , |C|}. Each class will, in
general, be modeled as an HMM with a distinct number of states n(c), ∀c ∈ C.
We therefore employ the notation τa

s
(c)
i ,s

(c)
j

:= p(s
(c)
j |s(c)

i , a), φ
s
(c)
k

,o
:= p(o|s(c)

k )

and π
s
(c)
k

to represent the HMM parameters θc for class c; for example, s
(c)
k

represents the kth state of class c. By incorporating the prior distribution of
class label p(c), Bayes rule is applied to compute the posterior distribution of
class label

p(c|o1, · · · , oT , a1, · · · , aT , Θ) =
p(o1, · · · , oT |a1, · · · , aT , θc)p(c)∑

c∈C p(o1, · · · , oT |a1, · · · , aT , θc)p(c)
(7)

with Θ = {p(c), θc}c∈C denoting the cumulative parameters of the Bayesian
HMM classifier. The class that is most probable to have generated such a
sequence is used as the estimated class label.

In contrast with traditional classifiers, which passively receive feature vectors
(observation sequences) and do their best to predict the associated class labels,
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the Bayesian HMM classifier (7) can be used to actively select action sequence
(a1, a2, · · · , aT ) to maximize its ability to discriminate among classes. Further,
as discussed below, the probabilistic output of classification results also pro-
vides a mechanism to incorporate costs, adaptively determining what next
sensing action to take, as well as when to stop sensing and make a classifica-
tion decision.

2.3 Definition of cost-sensitive classification problem

In addition to the feature-acquisition actions Af discussed above, we introduce
a second type of action, defined by Ac = {ρ̂1, ρ̂2, · · · , ρ̂|C|}, with ρ̂c representing
the action that terminates feature acquisition and declares the object under
interrogation to be class c. To evaluate the outcomes of a classification action,
we define Cc a |C| × |C| matrix; matrix element cuv,∀u, v ∈ C, represents the
cost of declaring the item under interrogation to be class u, when in reality
it is class v. We also define the set of costs for feature-acquisition actions as
Cf = {c1, c2, · · · , cd}, with ci representing the cost of sensing the ith feature,
where here the costs could be monetary for instrument usage or could be in
terms of time for laboratory analysis, but they should have the same units as
used for Cc. For more information on defining the costs associated with a cost-
sensitive classifier, one may refer to [12]. With the definitions outlined above,
the cost-sensitive classification problem can now be described as follows:

Definition: Given a finite set of classes C = {1, 2, · · · , |C|}, a cost-sensitive
classifier finds an optimal action sequence (a∗1, a

∗
2, · · · ), where a∗i ∈ Af ∪ Ac,

to identify the class label, while on average minimizing the cumulative costs
defined as the sum of the feature acquisition and classification costs, Cf and
Cc, respectively.

3 POMDP Formulation to Cost-Sensitive Classification

The cost-sensitive classification problem, based on an HMM classifier, can
be directly formulated into a partially observable Markov decision process
(POMDP). We proceed to this by first giving a brief introduction to the
POMDP framework. The POMDP is a general setting for planning under
uncertainty [4,13,14]. A PODMP can be represented by the following 7-tuple:
{S,A,O, b0, T, Ω, C}, where S is a finite set of discrete states, satisfying a first-
order Markov assumption, A is a set of discrete actions, and O is a set of obser-
vations providing incomplete or noisy state information. The POMDP model is
parameterized by: b0(s), the initial belief state; T a

s,s′ := p(st = s′|st−1 = s, at =
a), the state transition function describing the probability of transitioning
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from state s to state s′ when taking action a; Ωa
s,o := p(ot = o|st = s, at = a),

the observation function describing the probability of observing o from state
s after taking action a; C(s, a), the cost of executing action a in state s.

The mapping of the HMM to a POMDP is direct: S = {s(c)
k ,∀k, c} is the set of

states across all classes; A = Af∪Ac is the union of feature-acquisition actions
Af and classification actions Ac; and O is the union of all possible observations
across all the features and all the classes. The POMDP parameters can be
integrated from the Bayesian HMM classifier Θ, and they are specified as
follows:

(1) Initial belief
b0(s) is the initial probability of being in state s,∀s ∈ S. The prior distribution
of class label p(c) can be incorporated into the POMDP by setting

b0(s) = p(c)π
s
(c)
k

, if s = s
(c)
k (8)

(2) State-transition function
A special structure is imposed on the state-transition probability, i.e., the state
transition is restricted to the internal states within one class,

T a

s
(u)
i ,s

(v)
j

=





τa

s
(u)
i ,s

(v)
j

, if u = v

0, else
, for a ∈ Af (9)

This reflects the fact that for a given (unknown) class, the dynamic system
must be in a subset of associated states and the feature-acquisition action
cannot change the underlying class.

(3) Observation function
Ωa

s,o is the probability of observing o from state s conditioned on action a. For
the feature acquisition action, this corresponds to the observation function φ
in HMM

Ωa
s,o = φ

s
(c)
k

,o
, if s = s

(c)
k ,∀o ∈ O, a ∈ Af (10)

Note that, in our mapping, the observation function Ωa
s,o is only linked to the

state but is the same for all a ∈ Af ; its action-dependency is fulfilled via the
state-transition probabilities (see the motivation in Sec. 2.1).

(4) Cost function
For feature-acquisition actions Af , the costs are assumed independent of which
particular state is being interrogated,

C(s, a = ρi) = ci,∀s ∈ S, a ∈ Af (11)
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Feature acquisition cost ci , for actionActuallyClass 1Classification costs: c11              c12             c21                c22
Class 1 Class 2

2ρ̂1ρ̂ ActuallyClass 2ActuallyClass 1ActuallyClass 21ρ̂

RandomReset
iρ

2ρ̂

Fig. 2. Schematic of the POMDP formulation for simple case of binary classification
problem. The action ρi (top box) corresponds to query the ith feature of a given
item; the action ρ̂c corresponds to stopping feature query and declaring class c. After
the classification action, the algorithm randomly resets the next state of another
item based on b0.

Similarly, for the classification actions Ac, since the ultimate objective is clas-
sification, different classification actions will incur different costs depending
on the true class under interrogation,

C(s, a = ρ̂u) = cuv, ∀s ∈ Sv, a ∈ Ac (12)

where Sv = {s(v)
k , k} denotes the set of states associated with class v. It shows

that once we declare the object under interrogation to be in class u, if in reality
it is in class v, a cost of cuv is incurred independent of which specific state of
class v is truly observed.

After taking a classification action, the POMDP model resets and it is as-
sumed to transition to a state of a randomly selected item based on the initial
belief distribution b0, i.e., p(s′|s, a) = b0(s

′),∀a ∈ Ac, and a new classifica-
tion episode starts. In summary, we illustrated the POMDP formulation of
the cost-sensitive classification problem in Fig. 2, for the simple case of two
classes.

Upon constructing the POMDP model as outlined above, POMDP policy de-
sign can be accomplished by using many existing algorithms [4,13,14], among
which PBVI [13] represents a practical algorithm that can find an approximate
policy in polynomial time (rather than exponential time required by the exact
solution). This yields a non-myopic policy that maps a belief state to an action,
with the goal of minimizing the expected sum of costs [4]. Although policy de-
sign is a time-consuming process, the computation is performed offline. After
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learning the policy, policy-based action selection for feature acquisition and
final classification is essentially instantaneous.

4 Myopic Solution to Cost-Sensitive Classification

4.1 Advantages and limitations of POMDP formulation

While the POMDP constitutes an intuitively appealing formulation, it presents
several challenges for the problem of interest here. For example, [15] has shown
that finding the exact solution for a POMDP is PSPACE-complete, which is
intractable for most practical problems of interest. Thus, approximate tech-
niques (e.g., [13,14]) have been applied in many real problems to find a policy
with the hope that it is close to optimal. Further, existing POMDP algorithms
only deal with discrete observations; there is no feasible (even approximate)
algorithm at this moment that can treat continuous observations well. This
means to apply the POMDP, features must be quantized before any process-
ing. This is often undesirable since information may be lost by quantization,
deteriorating classification performance. Perhaps the most undesirable prop-
erty of the POMDP formulation, for the applications of interest here, is the
issue of repeated actions (querying of the same feature multiple times). Re-
peated actions may be feasible under some circumstances for which an item
has features that obey an i.i.d probability distribution and the observation
may change independently on each sampling. However, in many cases, for a
given item under test, at minimum the sequence of identical sensing actions
will yield highly correlated observations, and often the observations will be
identical. It is therefore undesirable in many cases to allow multiple queries
(no information is gained from these queries, and a sensing cost is incurred).

The traditional POMDP formulation does not have a mechanism to forbid
action repetition. This is because in a traditional POMDP, the belief state
bT is the sufficient statistic of the history (a1, · · · , aT , o1, · · · , oT , b0), and the
optimal POMDP policy maps a belief state to an action [4]. However, for
the problem considered here, for which the repeated action is undesirable, the
belief state is not a sufficient statistic since all previous actions (a1, a2, · · · , aT )
must be remembered to avoid repetition. The optimal policy, in this case, must
be a function of the belief state and all possible combinations of actions, and
this increases the complexity of finding the optimal policy substantially (a
non-stationary policy is required, accounting for what previous actions were
taken). Our initial analysis of this case suggests that this problem is only
computationally tractable for small d (small number of features or sensing
actions), but this is a subject for future research.
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4.2 Proposed myopic approach

We circumvent the difficulties of the POMDP formulation by considering a
myopic approximation to the non-myopic POMDP solution, with an adaptive
stopping criterion implicitly linked to the POMDP setting, i.e., when the ex-
pected future reduction in Bayes risk is not justified by the expected future
cost in feature acquisition, a cost-sensitive classifier should stop querying more
features and a final classification is made. Yielding the non-myopic property of
the POMDP rewards the proposed method with significant flexibility to avoid
repeated actions, while also allowing consideration of continuous features.

After performing a sequence of T actions and making T observations, we may
compute the belief state for any state s ∈ S as

bT (s) = p(s|o1, · · · , oT , a1, · · · , aT , b0) = p(s|oT , aT , bT−1) (13)

Equation (13) reflects that the belief state bT is a sufficient statistic for a
given history: (a1, · · · , aT , o1, · · · , oT , b0), and bT can be updated from bT−1

by incorporating the latest action-observation pair [4]:

bT (s′) =
p(oT |s′, aT , bT−1)p(s′|aT , bT−1)

p(oT |aT , bT−1)

=
p(oT |s′, aT , bT−1)

∑
s p(s′|aT , bT−1, s)p(s|aT , bT−1)

p(oT |aT , bT−1)

=
p(oT |s′, aT )

∑
s p(s′|s, aT )bT−1(s)

p(oT |aT , bT−1)
(14)

where the denominator p(oT |a, bT−1) may be viewed as a normalization con-
stant, independent of s′, allowing bT (s′) to sum to one.

For the POMDP formulation addressed in Sec. 3, in which each class is mod-
eled by a distinct HMM, the belief state in (14) may also be used to compute
the posterior distribution of class label as

p(c|o1, · · · , oT , a1, · · · , aT , b0) = p(c|bT ) =
∑

s∈Sc

bT (s) (15)

One may show that (15) is equivalent to (7), indicating that an HMM classifier
is essentially embedded in the belief states, and it can be efficiently computed
by using the belief update (14). By incorporating the classification costs Cc,
the Bayes risk associated with bT can be computed as

R(bT ) = min
u

∑

v∈C
cuvp(v|bT ) = min

u

∑

v∈C
cuv

∑

s∈Sv

bT (s) (16)
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and a classification is effected by declaring the class that has the minimal
Bayes risk.

The Bayes risk (16) tells us how to use the belief state to make an optimal
decision at any point in the feature-acquisition process. The question on when
to make a classification is answered by comparing the cost of taking a further
feature-acquisition action against the expected reduction in Bayes risk, as
addressed below.

Assume that a feature-acquisition action a ∈ Āf could be taken next, where
Āf is composed of all actions Af except the actions that were taken previously,
(a1, a2, · · · , aT ). The expected Bayes risk associated with a may be computed
as

RE(bT , a) =
∑

o∈O
min

u


∑

v∈C
cuv

∑

s′∈Sv

∑

s∈S
p(o|s′, a)p(s′|s, a)bT (s)


 (17)

where the summation is over all possible observation from a finite set O for a
discrete POMDP. The utility of action a is then evaluated by

Ĉ(bT , a) = ca − [R(bT )−RE(bT , a)] (18)

where ca represents the cost of taking action a. If Ĉ for all a ∈ Āf is positive,
it indicates that the cost of feature acquisition exceeds the expected reduction
in Bayes risk, thus acquiring more features is not justified and a classification
is made based on bT . Otherwise, if Ĉ for some a ∈ Āf is negative, it shows that

it is still beneficial to acquire features and the action that has the minimal Ĉ
should be taken next until a classification action is justified. In summary, we
present the flowchart of the myopic algorithm in Table 1.

This myopic strategy is performed exactly and there is no offline policy design,
as required in the non-myopic POMDP. To better understand the complexity
of the myopic algorithm, let |B| be the number of elements in the set B. The
computation complexity of choosing one action is order |S|2|O||Āf |. This is
much more efficient than that of the non-myopic POMDP design, which is
order |S|2|A||V ||O|, with V representing the set of α-vectors in the previous
backup step [4, 13].

4.3 Continuous features

The above myopic algorithm considered a discrete set of observations, to make
the connection with a traditional POMDP. However, the simplicity of the
myopic algorithm enables us to readily handle continuous features. In this
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Table 1
Flowchart of the myopic algorithm for the Bayesian cost-sensitive classification.

1. Given: Bayesian HMM classifier parameters Θ, costs for feature acquisition
Cf , costs for classification Cc, and a randomly selected instance with a d-
dimensional feature vector F .

2. b0(s) = p(c)πsk(c), if s = s
(c)
k

3. T = d

4. for t = 1 : T

at = arg mina∈Af−{a1,··· ,at−1} Ĉ(bt−1, a)

if Ĉmin > 0

â = arg minu∈Ac [
∑

v∈C cuv
∑

s∈Sv
bt−1(s)] and return â

end

ot = F (at)

bt =belief update(bt−1, at, ot) eq.(14)

end

5. â = arg minu∈Ac [
∑

v∈C cuv
∑

s∈Sv
bT (s)] and return â

case, the summation in (17) becomes an integration

RE(bT , a) =
∫

p(o|bT , a)R(bT+1|bT , a, o)do (19)

As discussed in Sec. 2.1, the observation probability of each state is repre-
sented by a Gaussian distribution. Since each feature is a real number, we
may use a 1-D Gaussian distribution to represent one state in the POMDP
model, thus p(o|bT , aT+1) can be computed analytically with a 1-D mixture
of Gaussian distribution. However, the minimization operator in computing
R(bT+1|bT , a, o) hinders analytic computation of (19). Therefore, we employ
a sampling technique to evaluate it approximately. For example, if we use K
samples {õ1, õ2, · · · , õK} generated from density p(o|bT , a), then the expected
Bayes risk may be estimated as

RE(bT , a) ≈ 1

K

K∑

i=1

R(bT+1|bT , a, õi) (20)

However, we do not compute this term as in (20), since a large number of sam-
ples are required to obtain accurate estimation. Alternatively, we convert the
continuous observation probability (1-D Gaussian distribution) into a discrete
one (multinomial distribution), which entails the approximate evaluation of
(19) as in (17). To do this, we quantize the feature space into a finite set of
bins with the sorted centers of bins represented by {ō1, ō2, · · · , ōK}. Then the

13



probability of observing ōi in s ∈ S can be approximated as

Ωs,ōi
=

∫ (ōi+ōi+1)/2

(ōi−1+ōi)/2
N (x|µs, Γs)dx, with ō0 = −∞, ōK+1 = ∞ (21)

where µs and Γs are the mean and precision of the Gaussian distribution,
respectively, representing state s.

The effectiveness of this approximation is addressed as follows. As demon-
strated in the experiments, prior to applying the proposed method, all the
features are normalized to zero mean and unit variance; thus, the range of the
observations is fairly small, and we use k-means [16] to determine the centers
of bins, which results in a quantized representation that is close to the original
continuous feature space. In addition, (19) is only used for choosing the next
action, and the advantage of handling continuous features remains in the more
accurate belief update (14).

We emphasize that the discretization of (21) is very different than the discrete-
observation POMDP, in that the number of dicretization bins can be arbitrar-
ily large, since the computation complexity of the myopic algorithm has linear
growth in number of discrete observations, while the discrete POMDP has
exponential growth (see Sec. 4.2).

5 Experimental Results

We assess the performance of the cost-sensitive classifier on three well-known
benchmark datasets: the Pima Indians diabetes, the ionosphere, and the Wis-
consin diagnostic breast cancer (WDBC), which are accessible from the UCI
public website: http://www.ics.uci.edu/~mlearn/MLRepository.html. For
the Pima Indians diabetes, the goal is to decide whether a subject has dia-
betes or not, based on 8 measured variables; for the ionosphere, the problem
is to classify radar returns from the ionosphere, based on 34 features; and for
the WDBC, the task is to produce a benign/malignant diagnosis from a set
of 30 numerical features. Although all of these problems are binary classifica-
tion tasks, the POMDP and the myopic algorithm do not have this restriction
and can be applied to any multi-class problem. For POMDP policy design,
we use the PBVI algorithm [13] to find an approximate policy. We consider
two approaches when employing the POMDP policy for feature selection and
classification: (1) the POMDP-repeat, in which the repeated actions are al-
lowed and we just follow the policy until a classification action is selected,
(2) the POMDP-norepeat, in which the repeated actions are forbidden and
at each step we select the best action among all the remaining actions (in
terms of the details of the POMDP [13], we always choose the α-vector that
is optimal from among those that have not been used yet). Although the
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POMDP-norepeat can avoid repeated actions, the non-myopic policy, learned
in a standard POMDP setting, does not have any mechanism to avoid re-
peated actions. Thus, in a rigorous sense, the action sequences produced by
the POMDP-norepeat are not optimal. We present this set of results only to
evaluate the importance of avoiding repeated actions, and to compare with
other simple modifications to the POMDP that one could consider to avoid
repeated actions.

In all the experiments, prior to applying the algorithms, all features are nor-
malized to zero mean and unit variance, as in [17, 18]. For the POMDP solu-
tion, which can only deal with discrete observations, we further quantize the
normalized features into 40-dimensional discrete alphabet using k-means [16].
When performing model selection (see Appendix B), we use the VB-HMM
algorithm in [10] for discrete observations, i.e., for POMDP, and use the VB-
CHMM algorithm in [11] for continuous observations. Since we have applied
the VB method to select the model, the parameters of the cost-sensitive clas-
sifier can be obtained directly from the mean values of the posterior density of
HMM parameters learned from the VB method. For the myopic algorithm that
deals with continuous features, we use (21) to convert the continuous observa-
tion function into a discrete one with the K = 40 centers of bins determined
by k-means [16].

5.1 Experiments on the Pima Indian diabetes dataset

The Pima dataset includes 768 instances with each instance having 8 features,
representing 8 distinct medical tests, and there is a label of either “diabetes”
or “healthy” for each. In our experiments, these 768 cases are randomly split
into a training set of 512 examples and a testing set of the remaining 256.
From each training case, we randomly generate p = 20 feature acquisition
processes (by permuting the order in which the features were acquired; see
Appendix A) and obtain totally 512 × 20 features acquisition processes to
train a cost-sensitive classifier.

We first use the VB model selection technique discussed in Appendix B to
determine the optimal number of states for each class, and then we construct
the cost-sensitive classifier by using the mean values of the posterior density
corresponding to the optimal number of states. An example of results on model
selection by using VB-CHMM [11] is shown in Fig. 3.

In Figs. 3(a) and 3(b), we compute the evidence for every distinct number of
states (from 1 to 15) for the class “diabetes” and the class “healthy”, respec-
tively, and the optimal number of states is identified as five for each class.
For the number of states beyond these optimal values, the evidence decreases
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Fig. 3. Experimental results of model selection on the Pima data with randomly
selected 512 training instances and 256 testing instances. (a) model selection for
class “diabetes”; (b) model selection for class “healthy”; (c) classification accuracy
of the myopic solution on the testing instances with the cost defined as ci = 0,
cuu = 0, and cuv = 1, and the number of states is the same for both label types.

rapidly. This is because of the appearance of one or more redundant states
that collapses onto a specific data point, and the existence of redundant states
does not increase the average likelihood but leads to an increasing penalty
manifested in the second term of (B.6). To evaluate the effectiveness of the
model-selection technique, in Fig. 3(c) we also present the classification accu-
racy on the test instances for every distinct number of states, by using the
myopic algorithm with the defined costs: ci = 0 for i = 1, 2, · · · , d, cuu = 0 for
u ∈ C and cuv = 1 for u 6= v, ∀u, v ∈ C. Note that such a definition of costs
causes the objective of the cost-sensitive classifier to maximize the classifica-
tion accuracy. The results in Fig. 3(c) shows that the cost-sensitive classifier
yields the near-best classification accuracy when the number of states is five
for each class, which is consistent with the model selection results presented
in Figs. 3(a) and 3(b).

To assess the performance of the POMDP and the myopic solutions for cost-
sensitive classification, we apply the POMDP-repeat, the POMDP-norepeat
and the myopic algorithm on the Pima data with the costs obtained directly
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Table 2
Test costs for the Pima Indians Diabetes dataset [2].

Feature Index Description Test Cost

1 times pregnant number of times pregnant $1.00

2 glucose tol glucose tolerance $17.61

3 diastolic bp diastolic blood pressure $1.00

4 triceps triceps skin fold thickness $1.00

5 insulin serum insulin test $22.78

6 mass index body mass index $1.00

7 pedigree diabetes pedigree function $1.00

8 age age in years $1.00

from a real medical diagnosis. In Table 2 we summarize the test costs for the 8
features, based on the information from [2]. In addition, we also define the cost
of getting a case correctly diagnosed cuu = −$50 (noting that negative cost
is positive reward). By changing the cost of misclassification over the range
cuv = [$0, $1000] for u 6= v, we compare the performances of all three methods
evaluated on three quantities: (a) the average cost for diagnosing a “patient”,
(b) the classification accuracy, and (c) the average number of features acquired
for each “patient”.

For each experimental setting (i.e., each distinct cuv), we perform 10 indepen-
dent trials with each trail implemented on a training set of 512 instances and a
testing set of 256 instances, generated by randomly splitting the 768 instances
(as in [2]), with the average results shown in Fig. 4. As we can see, the my-
opic solution outperforms the POMDP-norepeat, and the POMDP-norepeat
outperforms the POMDP-repeat, over all three quantities: it pays on average
less cost for diagnosing a “patient”, it has higher classification accuracy, and
it uses on average much fewer tests for diagnosing a “patient”. As discussed
in Sec. 4, the inferior performance of the POMDP-repeat is caused mainly by
repeated actions that acquire the same feature multiple times. Comparing the
performance of the POMDP-norepeat with the POMDP-repeat, we know that
these repeated actions do not aid or even deteriorate the classification perfor-
mance, but drive cost up unnecessarily. Although both the POMDP-norepeat
and the myopic algorithm can avoid repeated action, the POMDP-norepeat
is not a non-myopic strategy in a rigorous sense as indicated by the inferior
performance compared with the myopic algorithm. As a reference, the ICET
algorithm presented in [2] obtained a classification accuracy of about 74%
(measured from the figure), our myopic algorithm is about 76%, although the
costs definition of the ICET is more complex than Table 2.

All computer code employed in this study was implemented in unoptimized
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Fig. 4. Performance of the POMDP and the myopic solution on the Pima dataset,
compared on three quantities: (a) the average cost of diagnosing a “patient”, (b)
the classification accuracy, and (c) the average number of features queried for each
“patient”. The results are averaged on 10 trials, with each trail implemented on
a training set of 512 instances and a testing set of 256 instances, generated by
randomly splitting the 768 instances.

Matlab. However, to give a sense of the computational complexity, for each ex-
perimental setting the offline POMDP policy design required 1 hour of CPU
with the PBVI algorithm [13], using a Pentium IV with 2.8 GHz CPU. In
these computations the PBVI was implemented on a total of 16 states (aver-
aged across 10 trails; model selection was performed separately for each set
of training data), 10 actions (8 feature-acquisition actions and 2 classifica-
tion actions), and 40 discrete observations. Selection of the actions for feature
acquisition and final classification was essentially instantaneous based on the
policy. In comparison, the myopic algorithm required 0.01 seconds of CPU per
action, and about 12 seconds on all 256 test cases.

5.2 Performance on three benchmark datasets

In the next set of experiments we further assess the classification performances
of the cost-sensitive classifier on the Pima Indian diabetes, the ionosphere,
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Table 3
Classification performances on three benchmark datasets. The cost-sensitive classi-
fier is tested with the defined costs: ci = 1, cuu = −10, and cuv = 200. The quantities
within the parentheses denote the average number of features queried for classifying
a given example. We emphasize that both POMDP results are undermined by the
respective set of approximations employed.

Method Pima Ionosphere WDBC

Myopic algorithm 76.31% (2.59) 92.28% (3.19) 95.24% (2.57)

POMDP-norepeat 71.43% (4.92) 89.05% (4.08) 92.40% (2.61)

POMDP-repeat 68.16% (17.4) 82.82% (6.80) 90.83% (4.05)

SVM 77.34%† 88.60%† 96.65%∗

Decision tree (C4.5) 73.83%† 91.45%† n.a.

Linear discriminant n.a. n.a. 92.94%∗

Gaussian process 77.37%¦ 92.01%¦ 97.03%∗

† : the results are obtained from online reports [19] by using the world renowned
WEKA data mining software developed at the University of Waikato, Hamilton,
New Zealand;
∗ : the results are obtained from [17] by transferring the numbers of test errors
into the correct percentages;
¦ : the results are obtained from [18] with the best reported correct percentages.

and the WDBC, with the defined cost functions: ci = 1 for i = 1, 2, · · · , d,
cuu = −10 for u ∈ C and cuv = 200 for u 6= v, ∀u, v ∈ C. Note that such a
definition of costs attempts to force the cost-sensitive classifier to use as few
features as possible while maximizing the classification accuracy. Thus, in this
case, we can compare the cost-sensitive classifier with traditional classifiers for
classification accuracy. For the Pima dataset, the problem description is the
same as that of Sec. 5.1, but we use 10-fold cross validation to evaluate its
classification performance (as in [18,19]). For the ionosphere data, there are a
total of 351 samples with each sample represented by a 34-dimenional feature
vector; the results were obtained with 10-fold cross validation (as in [18,19]).
For the WDBC problem, there are a total of 569 instances with each in-
stance having 30 features; the results reported were obtained by averaging
over 30 random partitions with 300 training instances and 269 testing in-
stances (as in [17]). Table 3 reports the classification performances achieved
by the myopic algorithm, the POMDP-norepeat, the POMDP-repeat, and
several other state-of-the-art techniques in literature. On all datasets consid-
ered, the myopic algorithm consistently outperforms the POMDP-repeat and
the POMDP-norepeat on the classification accuracy and on the number of
features queried. Again, as expected, the POMDP-norepeat outperforms the
POMDP-repeat by removing repeated actions. We also note that as the clas-
sification domain increases (larger d), the issue of repeated actions becomes
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less severe, as observed by the decreasing difference between the numbers of
features queried by the myopic algorithm and by the POMDP-repeat. Table 3
also shows that the myopic algorithm yields classification accuracies that are
close to or even better than state-of-the-art algorithms, and importantly the
myopic algorithm uses only a small fraction of the features that are generally
used in the competitive approaches.

6 Conclusions

Feature selection and classification are framed jointly as a cost-sensitive clas-
sification problem, solved by the POMDP technique and by a myopic algo-
rithm simplification that employs a stopping criterion linked to the standard
POMDP. Our approach for feature selection and classification is different from
traditional methods (see [20] and the references therein): (i) the traditional
methods do not consider the costs of querying features and do not aim to bal-
ance the costs of acquiring features with Bayes risks; (ii) our method selects
the feature in a sequential manner until no additional feature acquisition is
justified followed by a classification, while traditional methods, such as ker-
nel machines [20], select all the useful features simultaneously by setting the
weights on the redundant features to zero. Encouragingly, our approach ob-
tains similar classification performance relative to state-of-the-art algorithms
for the three benchmark datasets considered.

While the non-myopic POMDP constitutes an intuitively appealing formu-
lation to the cost-sensitive classification problem, the myopic approach may
be more effective in terms of computational complexity, handling continuous
features and avoiding repeated actions. The only bottleneck of the proposed
method is in the learning phase for building the HMM classifier. Once the
model has been learned, the feature selection and classification are accom-
plished efficiently. For problems with very large sets of features, the fast HMM
learning algorithms (e.g., [21]) could be applied to speedup HMM learning,
and enable the proposed method to be applicable on larger problems.

While the results of the myopic approach appear promising, based on the set
of results reported here, there may be some examples for which a non-myopic
approach may be preferable. For example, in some problems a sequence of in-
expensive tests (features) may be ineffective individually, but may collectively
by highly discriminative. A myopic approach may not select such features,
rather seeking a single feature that may be discriminative but highly expen-
sive. Future research is warranted to this non-myopic POMDP policy design
while avoiding repeated actions, especially for the classification domains with
a large number of features; this will entail development of non-stationary poli-
cies that keep track of which features have been selected.
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A HMM parameter learning

In Sec. 2.1 we provided a motivation for modeling the sequential acquisition
of features as an HMM, with the underlying states linked to the statistics
of the features. In practice, to obtain the HMM parameters θ = {π, τ, φ},
learning is required based on the training data. Assume we are given a set
of training items {xi}L

i=1 from a class, where xi = (xi
1, x

i
2, · · · , xi

d) represents
the ith training item with a feature vector length of d. Since for each d-
dimensional feature vector there are d! distinct feature-acquisition processes
(corresponding to all possible ways of acquiring these d features), then totally
L× d! feature-acquisition processes can be constructed for training an HMM.
In practice, this is a large dataset even for the classification problem with
small d. To speedup the HMM training, we randomly select a small set of
p ¿ d! feature-acquisition sequences from each feature vector, and form a
training set of size L × p. To learn the HMM parameters, we can use the
expectation-maximization (EM) algorithm [7, 22] or the variational Bayesian
(VB) method [10,11,23], as discussed in Appendix B.

B Variational Bayes model selection for HMMs

One of the key tasks in the application of HMM is to determine a suitable
number of HMM states. There are many approaches to model selection for
graphical models, e.g., HMMs. One may refer to [23, 24] for a general intro-
duction to this problem. Among all the methods, variational Bayes (VB) rep-
resents a principled and practical approache for model selection. We present
the basic ideas of the VB approach for the case of HMMs, and for more details
one may refer to [10,11,23].

Assume that D represents the complete set of sequential data associated with
one class, and the integer M represents the number of states considered for
the HMM. The marginal likelihood or “evidence” for an M -state HMM is
represented as

p(D|M) =
∫

p(D|θ, M)p(θ|M)dθ (B.1)

where θ denotes the HMM parameters. The integration in (B.1) is typically
computationally intractable, even in very simple cases. Most existing methods,
such as Markov Chain Monte Carlo (MCMC) and the Laplace approximation
[24] either require vast computational resources to obtain accurate estimates
or crudely approximate all the posteriors via a normal distribution. Between
these two extremes, the VB method attempts to approximate the integration
as accurately as possible while remaining computationally tractable. This is
accomplished via the approximation of the integration (B.1) by a lower bound
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[23], which can be derived from a fundamental relationship between the log-
likelihood, negative free energy and the Kullback-Leibler (KL) divergence as
follows:

log p(D) = F (q) + KL(q||p) (B.2)

with

F (q) =
∫

q(S, θ) log
p(D, S, θ)

q(S, θ)
dSdθ (B.3)

KL(q||p) =
∫

q(S, θ) log
q(S, θ)

p(S, θ|D)
dSdθ (B.4)

where S is the hidden state sequence over which the data sequence D is ob-
served, q(S, θ)is the variational posterior over model parameters and hidden
variables, and p(S, θ|D) is the true posterior density that to be estimated.
Since the KL divergence is non-negative and is zero for identical distributions,
this indicates that F (q) is a strict lower bound on log p(D),

log p(D) ≥ F (q) (B.5)

with equality if the variational posterior density equals the true posterior
density, i.e., q(S, θ) = p(S, θ|D).

The objective of VB is to maximize this lower bound by tuning the variational
posterior q(S, θ) such that as the variational posterior approaches the true
posterior p(S, θ|D), the bound becomes tight, thus the marginal log-likelihood
log p(D) can be approximated efficiently by F (q). To make this maximization
tractable, VB relies on the concept of conjugate priors and the factorization
of variational posterior, i.e., q(S, θ) = q(S)q(θ), with the resulted algorithm
generalizing the standard Expectation Maximization (EM) algorithm, whose
convergence is guaranteed.

To understand why the VB objective function F (q) is a good score for model
selection, it is useful to rewrite (B.3) as

F (q) =

〈
log

p(D, S|θ)
q(S)

〉

S,θ

−KL(q(θ)||p(θ)) (B.6)

where the average in the first term is taken with respect to q(S, θ). The
first term corresponds to the average log-likelihood, representing how well
the model fits the data. The second term is the KL distance between the prior
and posterior over the parameters. As the number of parameters increases,
the KL distance follows and consequently penalizes the complex model.
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