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Abstract

The data of interest are assumed to be represented as N -dimensional real vectors, and these vectors

are compressible in some linear basis B, implying that the signal can be reconstructed accurately using

only a small number M ¿ N of basis-function coefficients associated with B. Compressive sensing is

a framework whereby one does not measure one of the aforementioned N -dimensional signals directly,

but rather a set of related measurements, with the new measurements a linear combination of the original

underlying N -dimensional signal. The number of required compressive-sensing measurements is typically

much smaller than N , offering the potential to simplify the sensing system. Let f denote the unknown

underlying N -dimensional signal, and g a vector of compressive-sensing measurements, then one may

approximate f accurately by utilizing knowledge of the (under-determined) linear relationship between

f and g, in addition to knowledge of the fact that f is compressible in B. In this paper we employ a

Bayesian formalism for estimating the underlying signal f based on compressive-sensing measurements

g. The proposed framework has the following properties: (i) in addition to estimating the underlying

signal f , “error bars” are also estimated, these giving a measure of confidence in the inverted signal;

(ii) using knowledge of the error bars, a principled means is provided for determining when a sufficient

number of compressive-sensing measurements have been performed; (iii) this setting lends itself naturally

to a framework whereby the compressive sensing measurements are optimized adaptively and hence not

determined randomly; and (iv) the framework accounts for additive noise in the compressive-sensing

measurements and provides an estimate of the noise variance. In this paper we present the underlying

theory, an associated algorithm, example results, and provide comparisons to other compressive-sensing

inversion algorithms in the literature.

Index Terms

Compressive sensing (CS), Sparse Bayesian learning, Relevance vector machine (RVM), Experimen-

tal design, Adaptive compressive sensing, Bayesian model selection.
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I. INTRODUCTION

Over the last two decades there have been significant advances in the development of orthonormal bases

for compact representation of a wide class of discrete signals. An important example of this is the wavelet

transform [1], [2], with which general signals are represented in terms of atomic elements localized in

time and frequency, assuming that the data index represents time (it may similarly represent space). The

localized properties of these orthonormal time-frequency atoms yields highly compact representations of

many natural signals [1], [2]. Let the N × N matrix B represent a wavelet basis, with basis functions

defined by associated columns; a general signal f ∈ RN may be represented as f = Bw, where

w ∈ RN represents the wavelet and scaling function coefficients [1], [2]. For most natural signals f ,

most components of the vector w have negligible amplitude. Therefore, if ŵ represents the weights w

with the smallest N −M coefficients set to zero, and f̂ = Bŵ, then the relative error ‖f − f̂‖2/‖f‖2

is often negligibly small for M ¿ N . This property has led to the development of state-of-the-art

compression algorithms based on wavelet-based transform coding [3], [4].

In conventional applications one first measures the N -dimensional signal f , f is then compressed (often

using a wavelet-based transform coding scheme), and the compressed set of basis-function coefficients

w are stored in binary [3], [4]. This invites the following question: If the underlying signal is ultimately

compressible, is it possible to perform a compact (“compressive”) set of measurements directly, thereby

offering the potential to simplify the sensing system (reduce the number of required measurements)?

This question has recently been answered in the affirmative [5], [6], introducing the field of compressive

sensing (CS).

In its earliest form the relationship between the underlying signal f and the CS measurements g has

been constituted through random projections [6], [7]. Specifically, assume that the signal f is compressible

in some basis B (not necessarily a wavelet basis), the k-th CS measurement gk (k-th component of g) is

constituted by projecting f onto a “random” basis that is constituted with “random” linear combination

of the basis functions in B, i.e., gk = fT (Brk), where rk ∈ RN is a column vector with each element

an i.i.d. draw of a random variable, with arbitrary alphabet (e.g., real or binary) [6], [7].

Based on the above discussion, the CS measurements may be represented as g = ΦBT f = Φw,

where Φ = [r1 . . . rK ]T is a K × N matrix, assuming K random CS measurements are made. Since

typically K < N this amounts to having fewer measurements than degrees of freedom for the signal f .

Therefore, inversion for the N -weights represented by w (and hence f ) is ill-posed. However, if one

exploits the fact that w is sparse with respect to a known orthonormal basis B, then one may approximate
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w accurately [5], [6]. A typical means of solving such an ill-posed problem, for which it is known that

w is sparse, is via an `1-regularized formulation [6]

w̃ = arg min
w
{‖g −Φw‖2

2 + ρ‖w‖1}, (1)

where the scalar ρ controls the relative importance applied to the Euclidian error and the sparseness

term (the first and second expressions, respectively, inside the brackets in (1)). This basic framework has

been the starting point for several recent CS inversion algorithms, including linear programming [8] and

greedy algorithms [9], [10], for a point estimate of the weights w.

In this paper we consider the inversion of compressive measurements from a Bayesian perspective.

Specifically, from this standpoint we have a prior belief that w should be sparse in the basis B, data g

are observed from compressive measurements, and the objective is to provide a posterior belief (density

function) for the values of the weights w. Besides the improved accuracy over the point estimate (to

be discussed in Sec. III-B), the Bayesian formalism, more importantly, provides a new framework that

allows us to address a variety of issues that previously have not been addressed. Specifically, rather

than providing a point (single) estimate for the weights w, a full posterior density function is provided,

which yields “error bars” on the estimated f ; these error bars may be used to give a sense of confidence

in the approximation to f , and they may also be used to guide the optimal design of additional CS

measurements, implemented with the goal of reducing the uncertainty in f ; in addition, the Bayesian

framework provides an estimate for the posterior density function of additive noise encountered when

implementing the compressive measurements.

The remainder of the paper is organized as follows. In Sec. II we consider the CS inversion problem

from a Bayesian perspective, and make connections with what has been done previously for this problem.

The analysis is then generalized in Sec. III, yielding a framework that lends itself to efficient computation

of an approximation to a posterior density function for f . In Sec. IV we examine how this framework

allows adaptive CS, whereby the aforementioned projections rk are selected to optimize a (myopic)

information measure. Example results on canonical data are presented in Sec. V, with comparisons to

other algorithms currently in the literature. Conclusions and future work are discussed in Sec. VI.

II. COMPRESSIVE-SENSING INVERSION FROM BAYESIAN VIEWPOINT

A. Compressive Sensing as Linear Regression

It was assumed at the start that f is compressible in the basis B. Therefore, let ws represent an

N -dimensional vector that is identical to the vector w for the M elements in w with largest magnitude;
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the remaining N−M elements in ws are set to zero. Similarly, we introduce a vector we that is identical

to w for the smallest N −M elements in w, with all remaining elements of we set to zero. We therefore

have w = ws + we, and

g = Φw = Φws + Φwe = Φws + ne, (2)

with ne = Φwe. Since it was assumed at the start that Φ is constituted through random samples, the

components of ne may be approximated as a zero-mean Gaussian noise as a consequence of Central-

Limit Theorem [11] for large N −M . We also note that the CS measurements may be noisy, with the

measurement noise, denoted by nm, represented by a zero-mean Gaussian distribution, and therefore

g = Φws + ne + nm = Φws + n, (3)

where the components of n are approximated as a zero-mean Gaussian noise1 with unknown variance

σ2. We therefore have the Gaussian likelihood model

p(g|ws, σ
2) = (2πσ2)−K/2 exp

(
− 1

2σ2
‖g −Φws‖2

)
. (4)

This above analysis has converted the CS problem of inverting for the sparse weights ws into a linear-

regression problem with a constraint (prior) that ws is sparse. Assuming knowledge of Φ, the quantities

to be estimated based on the CS measurements g are the sparse weights ws and the noise variance σ2.

In a Bayesian analysis we seek a full posterior density function for ws and σ2.

B. Sparseness Prior and MAP Approximation

In a Bayesian formulation our understanding of the fact that ws is sparse is formalized by placing a

sparseness-promoting prior on ws. A widely used sparseness prior is the Laplace density function [12],

[13]:

p(w|λ) = (λ/2)N exp(−λ
N∑

i=1

|wi|), (5)

where in (5) and henceforth we drop the subscript s on w, recognizing that we are always interested in a

sparse solution for the weights. Given the CS measurements g, and assuming the likelihood function in

(4), it is straightforward to demonstrate that the solution in (1) corresponds to a maximum a posteriori

(MAP) estimate for w using the prior in (5) [13], [14].

1In practice, not all of the assumptions made in deriving (3) will necessarily be valid, but henceforth we simply use (3) as a

starting point, motivated for the reasons discussed above, and desirable from the standpoint of analysis.
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III. ESTIMATE OF SPARSE WEIGHTS VIA RELEVANCE VECTOR MACHINE

A. Hierarchical Sparseness Prior

The above discussion connected conventional CS inversion for the weights w to a MAP approximation

to a Bayesian linear-regression analysis, with a Laplace sparseness prior on w. This then raises the

question of whether the Bayesian analysis may be carried further, to realize an estimate of the full

posterior on w and σ2. This is not readily accomplished using the Laplace prior directly, since the

Laplace prior is not conjugate2 to the Gaussian likelihood and hence the associated Bayesian inference

may not be performed in closed form [12], [15].

This issue has been addressed previously in sparse Bayesian learning, particularly, with the relevance

vector machine (RVM) [16]. Rather than imposing a Laplace prior on w, in the RVM a hierarchical prior

has been invoked, which has similar properties as the Laplace prior but allows convenient conjugate-

exponential analysis. To see this, one first defines a zero-mean Gaussian prior on each element of w:

p(w|α) =
N∏

i=1

N (wi|0, α−1
i ), (6)

with αi the precision (inverse-variance) of a Gaussian density function. Further, a Gamma prior is

considered over α:

p(α|a, b) =
N∏

i=1

Γ(αi|a, b). (7)

By marginalizing over the hyperparameters α, the overall prior on w is then evaluated as

p(w|a, b) =
N∏

i=1

∫ ∞

0
N (wi|0, α−1

i )Γ(αi|a, b)dαi. (8)

The density function Γ(αi|a, b) is the conjugate prior for αi, when wi plays the role of observed data and

N (wi|0, α−1
i ) is a likelihood function. Consequently, the integral

∫∞
0 N (wi|0, α−1

i )Γ(αi|a, b)dαi can be

evaluated analytically, and it corresponds to the Student-t distribution [16]. With appropriate choice of

a and b, the Student-t distribution is strongly peaked about wi = 0, and therefore the prior in (8) favors

most wi being zero (i.e., it is a sparseness prior). Similarly, a Gamma prior Γ(α0|c, d) is introduced on

the inverse of the noise variance α0 = 1/σ2.

To see the advantage of this hierarchical prior, consider the graphical structure of the model as reflected

in Fig. 1, for generation of the observed data g. Following consecutive blocks in Fig. 1 (following the

direction of the arrows), let pk represent the parameter associated with block k, and pk+1 represents the

2In Bayesian probability theory, a class of prior probability distributions p(θ) is said to be conjugate to a class of likelihood

functions p(x|θ) if the resulting posterior distributions p(θ|x) are in the same family as p(θ).
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Fig. 1. Graphical model of the Bayesian CS formulation.

next parameter in the sequence. For all steps in Fig. 1, the density function for pk is the conjugate prior for

the likelihood defined in terms of the density function for pk+1, assuming that all parameters except pk are

held constant (i.e., all parameters other than pk temporarily play the role of fixed data). This structural

form is very convenient for implementing iterative algorithms for evaluation of the posterior density

function for w and α0. For example, one may conveniently implement a Markov Chain Monte Carlo

(MCMC) [17] or, more efficiently and approximately, a variational Bayesian (VB) analysis [18]. While

the VB analysis is efficient relative to MCMC, in the RVM a type-II maximum-likelihood (ML) procedure

is considered, with the objective of achieving highly efficient computations while still preserving accurate

results.

As one may note, the Bayesian linear model considered in RVM is essentially one of the simplified

models for Bayesian model selection [19]–[21]. Although more accurate models may be desired, the

main motivation of adopting the RVM is due to its highly efficient computation as discussed below.

B. Bayesian CS Inversion via RVM

Assuming the hyperparameters α and α0 are known, given the CS measurements g and the projection

matrix Φ, the posterior for w can be expressed analytically as a multivariate Gaussian distribution with

mean and covariance:

µ = α0ΣΦT g, (9)

Σ = (α0ΦTΦ + A)−1, (10)
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where A = diag(α1, α2, . . . , αN ). The associated “learning” problem, in the context of the RVM, thus

becomes the search for the hyperparameters α and α0. In the RVM these hyperparameters are estimated

from the data by performing a type-II ML (or evidence maximization) procedure [16]. Specifically, by

marginalizing over the weights w, the marginal likelihood for α and α0, or equivalently, its logarithm

L(α, α0) can be expressed analytically as

L(α, α0) = log p(g|α, α0) = log
∫

p(g|w, α0)p(w|α)dw

= −1
2

[
K log 2π + log |C|+ gTC−1g

]
, (11)

with C = σ2I + ΦA−1ΦT . A type-II ML approximation employs the point estimates for α and α0 to

maximize (11), which can be implemented via the EM algorithm (or other techniques) [16], to yield:

αnew
i =

γi

µ2
i

, i ∈ {1, 2, . . . , N}, (12)

where µi is the i-th posterior mean weight from (9) and we have defined the quantities γi , 1− αiΣii,

with Σii the i-th diagonal element of the posterior weight covariance from (10). For the noise variance

σ2 = 1/α0, differentiation leads to the re-estimate:

1/αnew
0 =

‖g −Φµ‖2
2

K −∑
i γi

. (13)

Note that αnew and αnew
0 are a function of µ and Σ, while µ and Σ are a function of α and α0. This

suggests an iterative algorithm, which iterates between (9)-(10) and (12)-(13), until a convergence criterion

has been satisfied. In this process, it is observed that many of the αi tend to infinity (or are numerically

indistinguishable from infinity given the machine precision) for those wi that have insignificant amplitudes

for representation of g = Φw; only a relatively small set of wi, for which the corresponding αi remains

relatively small, contribute for representation of g, and the level of sparseness (size of M ) is determined

automatically (see [22] for an interesting explanation from a variational approximation perspective). It is

also important to note that, as a result of the type-II ML estimate (11), the point estimates (rather than

the posterior densities) of α and α0 are sought. Therefore, there is no need to set a, b, c and d on the

Gamma hyperpriors. This is equivalent to setting a, b, c and d to zero, and thus uniform hyperpriors

(over a logarithmic scale) on α and α0 have been invoked [16].

While it is useful to have a measure of uncertainty in the weights w, the quantity of most interest is the

signal f = Bw. Since w is drawn from a multivariate Gaussian distribution with mean and covariance

defined in (9)-(10), the posterior density function on f is also a multivariate Gaussian distribution with
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mean and covariance:

E(f) = Bµ, (14)

Cov(f) = BΣBT . (15)

The diagonal elements of the covariance matrix in (15) provide “error bars”3 on the accuracy of the

inversion of f , as represented in terms of its mean in (14).

While the iterative algorithm described above has been demonstrated to yield a highly accurate sparse

linear-regression representation [16], we note the following practical limitation. When evaluating (10)

one must invert matrices of size N ×N : an O(N3) operation4, thereby making this approach relatively

slow for data f of large dimension N (at least for the first few iterations). This motivates development of

a fast RVM algorithm with the objective of achieving highly efficient computations that are comparable

to existing CS algorithms (e.g., OMP [9] and StOMP [10]).

Fortunately, this fast RVM algorithm has been developed in [26], [27] by analyzing the properties of

the marginal likelihood function in (11). This enables a principled and efficient sequential addition and

deletion of candidate basis function (columns of Φ) to monotonically maximize the marginal likelihood.

We omit the detailed discussion of this fast algorithm, and refer the reader to [26], [27] for more details.

We here only briefly summarize some of its key properties. Compared to the iterative algorithm presented

above, the fast algorithm operates in a constructive manner, i.e., sequentially adds (or deletes) candidate

basis function to the model until all M “relevant” basis functions (for which the associated weights

are nonzero) have been included. Thus, the complexity of the algorithm is more related to M than N .

Further, by exploiting the matrix inverse identity, the inverse operation in (10) has been implemented by

an iterative update formula with reduced complexity. Detailed analysis of this algorithm shows that it has

complexity O(NM2), which is more efficient than the original RVM, especially when the underlying

signal is truly sparse (M ¿ N ).

In contrast to other CS algorithms (e.g., OMP [9] and StOMP [10], in which basis functions once

added are never removed), the fast RVM algorithm has the operation of deleting a basis function from

the model (i.e., setting the corresponding αi = ∞). This deletion operation allows the fast algorithm to

3While previous works [23], [24] in CS do obtain `2 error bounds for function estimates, the “error bars” may be more useful

from a practical standpoint as discussed in the next section.
4A simple modification to (10) is available from [25] by exploiting the matrix inverse identity, which leads to an O(K3)

operation per iteration. Nonetheless, the iterative (EM) implementation still does not scale well.
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maintain a more concise signal representation and is likely one of the explanations for the improvement

in sparsity demonstrated in the experiments (see Sec. V).

In addition, recent theoretical analysis of the RVM [28], [29] indicates that the RVM provides a tighter

approximation to the `0-norm sparsity measure than the `1-norm, and prove that even in the worst-case

scenario, the RVM still outperforms the most widely used sparse representation algorithms, including BP

[8] and OMP [9]. Although these studies are based on the iterative (EM) implementation of the RVM,

they indeed shed light on the fast implementation considered here, since both implementations are based

on the same cost function (11). Our empirical study in Sec. V is also consistent with these theoretical

results. Nonetheless, rigorous analysis of this fast algorithm remains worthy of further inquiry.

IV. ADAPTIVE COMPRESSIVE SENSING

A. Selecting Projections to Reduce Signal Uncertainty

In the original CS construction [6], [7], the projections represented by the matrix Φ were constituted via

i.i.d. realizations of an underlying random variable. In addition, previous CS algorithms [8]–[10] focused

on estimating w (and hence f ) have employed a point estimate like that in (1); such approaches do not

provide a measure of uncertainty in f , and therefore adaptive design of Φ was previously not feasible.

The Bayesian CS (BCS) algorithm (in this case the fast RVM algorithm) discussed in Sec. III-B, allows

efficient computation of f and associated error bars, as defined by (14) and (15), and therefore one may

consider the possibility of adaptively selecting projection rK+1, with the goal of reducing uncertainty.

Such a framework has been previously studied in the machine learning community under the name of

experimental design or active learning [30]–[32]. Further, the error bars also give a way to determine how

many measurements are enough for faithful CS reconstruction, i.e., when the change in the uncertainty

is not significant, it may be assumed that one is simply reconstructing the noise n in (3), and therefore

the adaptive sensing may be stopped.

As discussed above, the estimated posterior on the signal f is a multivariate Gaussian distribution,

with mean E(f) = Bµ and covariance Cov(f) = BΣBT . The differential entropy [33] for f therefore

satisfies:

h(f) = −
∫

p(f) log p(f) df =
1
2

log |BΣBT |+ const =
1
2

log |Σ|+ const

= −1
2

log |A + α0ΦTΦ|+ const, (16)

where const is independent of the projection matrix Φ. Recall that A = diag(α1, α2, . . . , αN ), and

therefore the dependence of the differential entropy on the observed CS measurements g is defined by
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the point estimates of α and α0 (from the type-II ML estimates discussed in Sec. III)5.

We may now ask which new projection rK+1 would be optimal for minimizing the differential entropy

in (16). Toward this end, we augment Φ by adding a (K + 1)-th row represented by rT
K+1. If we let

hnew(f) represent the new differential entropy as a consequence of adding this new projection vector,

via the matrix determinant identity, we have

hnew(f) = h(f)− 1
2

log
(
1 + α0r

T
K+1ΣrK+1

)
, (17)

where α0 and Σ are based on estimates found using the previous K measurements. To minimize hnew,

the next projection rK+1 should hence be designed to maximize rT
K+1ΣrK+1. Since

rT
K+1ΣrK+1 = rT

K+1Cov(w)rK+1 = Var(gK+1), (18)

this is equivalent to maximizing the variance of the expected measurement gK+1. In other words, the

next projection rK+1 should be selected to constitute the measurement gK+1 for which the data is most

uncertain, and hence access to the associated measurement would be most informative.

The adaptive framework provides an attractive setting for selection of the next projection rK+1, with

the goal of optimizing – in a one-look-ahead (myopic) sense – the rate at which the uncertainty in f

diminishes [30]–[32]. There are multiple ways this may be utilized in practice. If it is possible to design

new projection rK+1 adaptively “on the fly”, then one might perform an eigen-decomposition of the

matrix Σ, and select for representation of rK+1 the eigenvector with largest eigenvalue. Alternatively, if

from a hardware standpoint such flexibility in design of rK+1 is not feasible, then one might a priori

design a library L of possible next projections, with rK+1 selected from L with the goal of maximizing

(18). In the example results in Sec. V, we select the next projection rK+1 as the eigenvector of Σ that

has the largest eigenvalue, but design of an a priori library L may be more useful in practice, and this

remains an important direction for future research.

We also note the following practical issue for implementation of adaptive CS. Assume that an initial

set of CS measurements are performed with a fixed set of projections, for which data g are measured.

Based upon g and knowledge of the initial projections, there is a deterministic mapping to the next

optimized projection, with which the next CS measurement is performed. Consequently, although the

optimized projections are performed on the sensor, when performing signal reconstruction subsequently,

5In practice, many of the αi have the value of infinity (or exceed the machine precision), indicating the corresponding basis

functions in Φ are excluded for sparse representation. Therefore, when evaluating (16), both A and Φ only employ elements

corresponding to the basis functions selected by BCS, and they are thus reduced in general to small matrices.
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the optimized projections that are performed at the sensor may be inferred offline, and therefore there is

no need to send this information to the decoder. Consequently, the performance of optimized projections

introduces no new overhead for storage of the compressive measurements g (i.e., we do not have to store

the adaptively determined projections).

An additional issue needs to be clarified if the eigenvector of Σ is used for the next projection rK+1.

Due to the sparse Bayesian solution, Σ only employs elements corresponding to the associated nonzero

components of w found based on BCS (i.e., Σ is reduced in general to a small matrix). Thus, when

constructing the next projection based on the eigenvector, some entries of rK+1 will be empty. If we

impute all the empty entries with zero, we are under the risk of being wrong. The initial estimate of

w can be inaccurate; if we impute all the empty entries with zero, the estimate of w may be always

biased and has no chance to be corrected, since the corresponding contributions from underlying true w

are always ignored. To mitigate this problem, we impute the empty entries with random samples drawn

i.i.d. from a Gaussian distribution N (0, 1). After the imputation, we re-scale the `2-norm of the imputed

values to 0.14. By doing so, we utilize the optimized projection and meanwhile allow some contributions

from the empty entries. Overall, the final projection rK+1 has the magnitude ‖rK+1‖2 ≈ 1.01.

B. Approximate Adaptive CS

The “error bars” on the estimated signal f play a critical role in implementing the above adaptive

CS scheme, with these a direct product from the Bayesian analysis. Since there are established CS

algorithms based on a point estimate of w, one may ask whether these algorithms may be modified,

utilizing insights from the Bayesian analysis. The advantage of such an approach is that, if possible, one

would access some of the advantages of the Bayesian analysis, in an approximate sense, while being

able to retain the advantages of established fast CS algorithms. In this section, we consider one possible

approximate scheme for adaptive CS, and show that the adaptive CS and its approximate scheme may

be only amenable to the Bayesian analysis.

The uncertainty in f and the adaptive algorithm in (18) rely on computation of the covariance matrix

Σ = (α0ΦTΦ + A)−1. Since Φ is assumed known (but which basis functions have been selected by

BCS are unknown), this indicates that what is needed are estimates for α0 and α, the latter required for

the diagonal matrix A. Concerning the diagonal matrix A, it may be viewed from a signal processing

standpoint as a regularization of the matrix (α0ΦTΦ), to assure that the matrix inversion is well-posed.

While the Bayesian analysis in Sec. III indicates that the loading represented by A should be non-

uniform, we may simply make A diagonalized uniformly, with value corresponding to a small fraction
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of the average value of the diagonal elements of (α0ΦTΦ), i.e.,

Σ̂ =
(

α0ΦTΦ +
ε

Ns
trace(α0ΦTΦ)I

)−1

= α−1
0

(
ΦTΦ +

ε

Ns
trace(ΦTΦ)I

)−1

, (19)

where ε is a small positive value (e.g., ε = 0.1), and Ns is the number of basis functions selected by BCS

based on the current CS measurements. Since we are only interested in the eigenvectors of Σ̂, α0 in (19)

can be ignored for the computation of eigen-decomposition. Therefore, for an approximate adaptive CS,

what is needed is only the basis functions selected by BCS, with which constitute the projection matrix

Φ in (19).

In the derivation of (19), we assume that the diagonal elements of A are relatively unform, such that A

can be approximated by a uniform diagonal matrix. While this assumption is typically valid for BCS, there

is no guarantee for other CS algorithms, since other CS algorithms may select basis functions that are

distinct from those selected by BCS. In Sec. V, when presenting example results, we make comparisons

between the rigorous implementation of adaptive CS presented in Sec. IV-A and the approximate scheme

discussed here, as applied to BCS and OMP6. As demonstrated, both the rigorous implementation and

the approximate scheme succeed in BCS, while the approximate scheme fails in OMP. Intuitively, this

is because the basis functions selected by OMP are different from those selected by BCS. Compared

to BCS, some OMP-selected basis functions should be removed. Therefore, from the Bayesian analysis

standpoint, the corresponding αi should be infinity, and thus the matrix A cannot be approximated by a

uniform diagonal matrix. These comparisons suggest that the adaptive CS developed in Sec. IV-A may be

only amenable to the Bayesian analysis, while it may not be feasible for other CS algorithms, indicating

the adaptive CS may be one of the unique advantages of BCS over other CS algorithms.

V. EXAMPLE RESULTS

We test the performances of BCS and adaptive CS on several example problems considered widely

in the CS literature, with comparisons (when appropriate) made to BP [8], OMP [9] and StOMP [10].

While BP is a relatively computationally expensive algorithm that involves linear programming, OMP

is a fast greedy strategy that iteratively selects basis functions most aligned with the current residual,

and StOMP is an extension of OMP and may be one of the state-of-the-art fast CS algorithms. In the

6OMP outputs both the weights and the indices of the selected basis functions. With these selected basis functions (which

form Φ), we can compute an approximate covariance matrix Σ̂ (19), from which we then compute the eigenvector.
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experiments, all the computations were performed on a 3.4GHz Pentium machine. The Matlab code is

available online at http://www.ece.duke.edu/˜shji/BCS.html.

A. 1D Signals

In the first example we consider a length N = 512 signal that contains M = 20 spikes created

by choosing 20 locations at random and then putting ±1 at these points (Fig. 2(a)). The projection

matrix Φ is constructed by first creating a K × N matrix with i.i.d. draws of a Gaussian distribu-

tion N (0, 1), and then the rows of Φ are normalized to unit magnitude. To simulate measurement

noise, zero-mean Gaussian noise with standard deviation σm = 0.005 is added to each of the K mea-

surements that define the data g. In the experiment K = 100, and the reconstructions are imple-

mented by BP and BCS. For the BP implementation, we used the `1-magic package available online at

http://www.acm.caltech.edu/l1magic/, and the BP parameters were set as those suggested

by `1-magic.

Figures 2(b-c) demonstrate the reconstruction results with BP and BCS, respectively. Due to noisy

measurements, BP cannot recover the underlying sparse signal exactly, nor can BCS. However, the BCS

reconstruction is much cleaner than BP, as M = 20 spikes are correctly recovered with (about 10

times) smaller reconstruction error relative to BP. In addition, BCS yields “error bars” for the estimated

signal, indicating the confidence for the current estimation. Regarding the computation time, BCS also

outperforms BP.

As discussed in Sec. IV, the Bayesian analysis also allows designing projection matrix Φ for adaptive

CS. In the second experiment, we use the same dataset as in Fig. 2 and study the performance of BCS

for projection design. The initial 40 measurements are conducted by using the random projections as in

Fig. 2, except that the rows of Φ are normalized to 1.01 for the reasons discussed in Sec. IV-A. The

remaining 80 measurements are sequentially conducted by optimized projections, with this compared

to using random projections. In the experiment, after each projection vector rk+1 is determined, the

associated reconstruction error is also computed. For the optimized projection, rk+1 is constructed by

using the eigenvector of Σ that has the largest eigenvalue. When examining the approximate scheme

discussed in (19), we set ε = 0.1 for diagonal loading. Because of the randomness in the experiment

(i.e., the generation of the original spike signal, the initial 40 random projections and the empty-entries

imputation for rk+1, etc.), we execute the experiment 100 times with the average performance and

variance reported in Figs. 3(a-b), respectively.

It is demonstrated in Figs. 3(a-b) that the reconstruction error of the optimized projection is much
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Fig. 2. Reconstruction of uniform Spikes for N = 512, M = 20, K = 100. (a) Original signal; (b) Reconstruction with BP,

‖fBP − f‖2/‖f‖2 = 0.1582, tBP = 1.66 secs; (c) Reconstruction with BCS, ‖fBCS − f‖2/‖f‖2 = 0.0146, tBCS = 0.46

secs.

smaller than that of the random projection, indicating the superior performance of this optimization. Fur-

ther, the approximate scheme in Sec. IV-B yields results very comparable to the rigorous implementation

in Sec. IV-A, suggesting that this approximate scheme may be well-suited for BCS.

However, to make a meaningful conclusion, we still have two questions to address. First, the spike

signal that we have considered above is exactly the case for which the nonzero entries of w have the

same magnitude, and thus seems well-suited to the uniform loading assumption. Second, besides BCS,

one may ask whether other CS algorithms may be modified to implement this approximate scheme, with

the same success as BCS.

To answer the first question, we execute the same experiment as above but on a non-uniform spike

signal as shown in Fig. 4(a). To make the comparison meaningful, the signal-to-noise-ratio (SNR) of the

both types of spike signals are fixed the same. The results on the non-uniform spike signal are shown in

Fig. 4 and Figs. 3(c-d), from which similar conclusions as for the uniform case can be made, indicating

that the uniform loading assumption is generally applicable for BCS.

It is worthwhile to point out some notable observations from Fig. 3 regarding the performance of

adaptive CS as compared to conventional CS. Specifically, Theorem 2 of [6] suggests that adaptive design

of projections is of minimal help over (nonadaptive) random projections. Derived from information-based
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Fig. 3. Comparison of adaptive CS and conventional CS on uniform spikes and non-uniform spikes by using BCS; the results

are averaged over 100 runs. (a, c) Reconstruction error of BCS with random projections, optimized projections (Sec. IV-A)

and approximate projections (Sec. IV-B); (b, d) the variances of the reconstruction error of BCS with random projections and

optimized projections (Sec. IV-A); the variance for the approximate projections (Sec. IV-B) is very similar to that of optimized

projections, and thus is omitted to improve visibility. (a, b) are the results on uniform spikes (as in Fig. 2); (c, d) are the results

on non-uniform spikes (as in Fig. 4). Note that the error bars (one standard deviations) in (c, d) only show how tight the errors

are around their mean values, and do not indicate the errors can be negative.

complexity, Theorem 2 of [6] shows that

Enonadapt ≤ 21/p · Eadapt, (20)

where Emethod denotes the minimax `2 reconstruction error of the method (adaptive or nonadaptive)

adopted, and p ∈ (0, 1] describes the compressibility of the underlying signal. In the most common case
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Fig. 4. Reconstruction of non-uniform Spikes for N = 512, M = 20, K = 100. (a) Original signal; (b) Reconstruction with BP,

‖fBP − f‖2/‖f‖2 = 0.1375, tBP = 1.89 secs; (c) Reconstruction with BCS, ‖fBCS − f‖2/‖f‖2 = 0.0178, tBCS = 0.27

secs.

p = 1, this inequality (20) elucidates that by using optimized projection at most 50% reduction in error

can be attained as compared to random projection. Not surprisingly, our results in Fig. 3 is consistent

with this conclusion. We note that 50% reduction in error may be not remarkable in theory (or from

a mathematical standpoint), but from a practical engineering standpoint 50% error reduction is often

significant.

As a secondary point, we also observe the following notable differences between the performances of

BCS as applied to the uniform spikes and the non-uniform spikes. Comparing Fig. 3(a) to Fig. 3(c), for a

given number of CS measurements, the reconstruction error on the non-uniform spikes is (much) smaller

than that on the uniform spikes. Evidently, this observation is consistent with some of the theoretical

analysis from [29], i.e., uniform weights offer the worst-case scenario for sparse signal reconstruction,

and “the more diverse the weights magnitudes, the better the chances we have of learning the optimal

solution”.

To address the second question above, we test the approximate adaptive CS scheme as applied to OMP,

with the results on the uniform spikes and the non-uniform spikes shown in Fig. 5. It is demonstrated in

Fig. 5 that in both cases the approximate scheme with OMP are unsuccessful. Intuitively, this is because

the basis functions selected by OMP are different from those selected by BCS. Compared to BCS, some

OMP-selected basis functions should be removed. Therefore, from the Bayesian analysis standpoint, the
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corresponding αi should be infinity, and thus the matrix A cannot be approximated by a uniform diagonal

matrix.

In summary, the empirical study presented above suggests that (i) the adaptive CS developed in Sec.

IV-A outperforms conventional CS, and this improvement is more remarkable for signals with uniform

weights; and (ii) the adaptive CS may be only amenable to the Bayesian analysis, while it may not

be feasible for other CS algorithms (e.g., OMP), indicating a unique advantage of BCS over other CS

algorithms. For these reasons, in the experiments that follow, when the adaptive CS is applied, we only

consider the rigorous implementation presented in Sec. IV-A, with this a direct benefit from BCS.
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Fig. 5. Comparison of the approximate adaptive CS (Approx.) and conventional CS (Random) by using OMP on (a) uniform

spikes (as in Fig. 2), and (b) non-uniform spikes (as in Fig. 4). The results are averaged over 100 runs.

B. 2D Images

In the following set of experiments, the performance of BCS is compared to BPDN (the noise-aware

version of BP) and StOMP (equipped with CFDR and CFAR thresholding) on two example problems

included in the Sparselab package that is available online at http://sparselab.stanford.edu/.

Following the experiment setting in the package, all the projection matrix Φ here are drawn from a uniform

spherical distribution [7]. For completeness, we also test the performances of adaptive CS on these two

example images as compared to conventional CS.

1) Random-Bars: Figure 6 shows the reconstruction results for Random-Bars that has been used in

[7]. We used the Haar wavelet expansion, which is naturally suited to images of this type, with a coarsest
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scale j0 = 3, and a finest scale j1 = 6. Figure 6(a) shows the result of linear reconstruction (i.e., the

inverse wavelet transform) with K = 4096 samples, which represents the best performance that could

be achieved by all the CS implementations used, whereas Figs. 6(b-d) have results for the hybrid CS

scheme (i.e., the CS measurements are made only on the fine-scale coefficients; no compression on the

coarsest-scale coefficients) [7] with K = 1216 hybrid compressed samples. It is demonstrated that BCS

and StOMP with CFAR yield the near optimal reconstruction error (0.2271); among all the CS algorithms

considered StOMP is the fastest one. However, as we have noted, the performance of StOMP strongly

relies on the thresholding parameters selected. For the Random-Bars problem considered, the performance

of StOMP with CFDR is very sensitive to its parameter-setting, with one typical example result shown

in Fig. 6(b).

(a) Linear Reconstruction, K=4096
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Fig. 6. Reconstruction of Random-Bars with hybrid CS. (a) Linear reconstruction from K = 4096 samples, ‖f lin−f‖2/‖f‖2 =

0.2271; (b) Reconstruction with CFDR, ‖fCFDR − f‖2/‖f‖2 = 0.5619, tCFDR = 3.15 secs; (c) Reconstruction with

CFAR, ‖fCFAR − f‖2/‖f‖2 = 0.2271, tCFAR = 4.38 secs; (c) Reconstruction with BCS, ‖fBCS − f‖2/‖f‖2 = 0.2271,

tBCS = 8.55 secs. BP (`1) took 114 secs with the reconstruction error 0.2279, which is not shown here.

2) Mondrian: Figure 7 displays a photograph of a painting by Piet Mondrian, the Dutch neo-plasticist.

Despite being a simple geometric example, this image still presents a challenge, as its wavelet expansion

is not as sparse as the examples considered above. We used a multiscale CS scheme [7] for image

reconstruction, with a coarsest scale j0 = 4, and a finest scale j1 = 6 on the “symmlet8” wavelet.

Figure 7(a) shows the result of linear reconstruction with K = 4096 samples, which represents the best
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performance that could be achieved by all the CS implementations used, whereas Figs. 7(b-d) have results

for the multiscale CS scheme with K = 2713 multiscale compressed samples. In the example results in

Figs. 7(b-c), we used the same parameter-setting for StOMP as those used in the SparseLab package. It is

demonstrated that all the CS implementations yielded a faithful reconstruction to the original image, while

BCS produced the second smallest reconstruction error (0.1498) using the second smallest computation

time (15 secs).

(a) Linear Reconstruction, K=4096
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Fig. 7. Reconstruction of Mondrian with multiscale CS. (a) Linear reconstruction from K = 4096 samples, ‖f lin−f‖2/‖f‖2 =

0.1333; (b) Reconstruction with CFDR, ‖fCFDR − f‖2/‖f‖2 = 0.1826, tCFDR = 10 secs; (c) Reconstruction with CFAR,

‖fCFAR−f‖2/‖f‖2 = 0.1508, tCFAR = 28 secs; (c) Reconstruction with BCS, ‖fBCS −f‖2/‖f‖2 = 0.1498, tBCS = 15

secs. BP (`1) took 162 secs with the reconstruction error 0.1416, which is not shown here.

To understand why BCS is more efficient than StOMP on this problem, we checked the number of

nonzero weights recovered by BCS and StOMP, with the results reported in Table I. Evidently, BCS

found the sparsest solution (with 751 nonzeros) relative to the two StOMP implementations, but yielded

the second smallest reconstruction error (0.1498). This indicates that although each iteration of StOMP

allows multiple nonzero weights to be added into the “active set” [10], this process may be a too generous

usage of weights without reducing the reconstruction error. The sparser solution of BCS is the likely

explanation of its relative higher speed compared to StOMP in this example.

Finally, the performances of adaptive CS as compared to conventional CS are provided in Figs. 8(a-b),

for Random-Bars and Mondrian, respectively. The adaptive CS consistently outperforms conventional CS
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TABLE I

SUMMARY OF THE PERFORMANCES OF BP, STOMP AND BCS ON MONDRIAN.

BP CFDR CFAR BCS

# Nonzeros 3840 1766 926 751

Time (secs) 162 10 28 15

Reconst. Error 0.1416 0.1826 0.1508 0.1498

in all the cases considered.
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Fig. 8. Comparison of adaptive CS (Optimized) and conventional CS (Random) on (a) Random-Bars, and (b) Mondrian. The

results are averaged over 100 runs.

VI. CONCLUSIONS

Compressive sensing has been considered from a Bayesian perspective. It has been demonstrated that

by utilizing the previously studied relevance vector machine (RVM) from the sparse Bayesian learning

literature, problems in CS can be solved more effectively. In practice, we have found that the results from

this Bayesian analysis are often sparser than existing CS solutions [8], [10]. On the examples considered

from the literature, BCS typically has computation time comparable to the state-of-the-art algorithms

such as StOMP [10]; in some cases, BCS is even faster as a consequence of the improved sparsity. We

have also considered adaptive CS by optimizing the projection matrix Φ. Empirical studies demonstrate
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a significantly accelerated rate of convergence compared to the original CS construction. Finally, we have

also demonstrated that the adaptive CS may be only amenable to the Bayesian analysis, while it may not

be feasible for other CS algorithms, indicating a unique advantage of BCS over other CS algorithms.

There is a clear connection between CS and regression shrinkage and selection via the Lasso [14], [34]

as both focus on solving the same objective function (1). Research on Lasso has produced algorithms that

might have some relevance to BCS. Besides this, other possible areas of future research may include (i)

even faster sparse Bayesian learning algorithms, as dealing with images is a high-dimensional problem,

(ii) simultaneous inversion of multiple data sets, borrowing ideas from multi-task learning [35], and (iii)

a theoretical analysis of adaptive CS, as this could be an important complement to the existing analysis

for the conventional CS formulation (e.g., [23], [24]).
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