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Abstract

This paper introduces a new problem for
which machine-learning tools may make an
impact. The problem considered is termed
“compressive sensing”, in which a real sig-
nal of dimension N is measured accurately
based on K�N real measurements. This is
achieved under the assumption that the un-
derlying signal has a sparse representation
in some basis (e.g., wavelets). In this pa-
per we demonstrate how techniques devel-
oped in machine learning, specifically sparse
Bayesian regression and active learning, may
be leveraged to this new problem. We also
point out future research directions in com-
pressive sensing of interest to the machine-
learning community.

1. Introduction

Over the last two decades there have been significant
advances in the development of orthonormal bases for
compact representation of a wide class of discrete sig-
nals. An important example of this is the wavelet
transform [Mallat, 1998], with which general signals
are represented in terms of atomic elements localized
in time and frequency, yielding highly compact rep-
resentations of many natural signals. Let the N×N
matrix B represent a wavelet basis, with basis func-
tions defined by associated columns; a general sig-
nal f ∈ R

N may be represented as f =Bw, where
w ∈ R

N represents the wavelet and scaling function
coefficients [Mallat, 1998]. For most natural signals f ,
most components of the vector w have negligible am-
plitude. Therefore, if ŵ represents the weights w with
the smallestN−M coefficients set to zero, and f̂=Bŵ,
then the relative error ||f−f̂ ||2/||f ||2 is often negligibly
small forM�N . This property has led to the develop-
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ment of state-of-the-art compression algorithms based
on wavelet-based transform coding [Pearlman et al.,
2004].

In conventional applications one first measures the N -
dimensional signal f , f is then transformed into a new
basis where the signal is sparse, and the new basis co-
efficients w are then quantized [Pearlman et al., 2004].
This invites the following question: If the underlying
signal is ultimately compressible, is it possible to per-
form a compact (“compressive”) set of measurements
directly, thereby offering the potential to simplify the
sensing system (reduce the number of required mea-
surements)? This question has recently been answered
in the affirmative [Candès et al., 2006,Donoho, 2006],
introducing the field of compressive sensing (CS).

In its earliest form the relationship between the un-
derlying signal f and the CS measurements g has
been constituted through random projections [Candès
et al., 2006,Donoho, 2006]. Specifically, assume that
the signal f is compressible in some basis B (not nec-
essarily a wavelet basis), the kth CS measurement gk

(kth component of g) is constituted by projecting f
onto a “random” basis that is constituted with a “ran-
dom” linear combination of the basis functions in B,
i.e., gk=fT (Brk), where rk ∈R

N is a column vector
with each element an i.i.d. draw of a random variable,
with arbitrary alphabet (e.g., real or binary) [Tsaig &
Donoho, 2006].

Based on the above discussion, the CS measurements
may be represented as g=ΦBTf =Φw, where Φ =
[r1 . . . rK ]

T is an K×N matrix, assuming K random
measurements are made. Since typically K < N we
have fewer measurements than degrees of freedom for
the signal f . Therefore, inversion for the weights w
(and hence f) is ill-posed. However, if one exploits the
fact thatw is sparse with respect to a known orthonor-
mal basis B, then one may approximate w accurately
via an 	1-regularized formulation [Donoho, 2006]

w̃ = argmin
w

{||g − Φw||22 + ρ||w||1}, (1)

where the scalar ρ controls the relative importance ap-
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plied to the Euclidian error and the sparseness term.
This basic framework has been the starting point for
several recent CS inversion algorithms, including lin-
ear programming [Chen et al., 1999] and greedy algo-
rithms [Tropp & Gilbert, 2005, Donoho et al., 2006],
for a point estimate of the weights w.

In the discussion that follows we demonstrate that
the solution to this problem may exploit many of the
tools developed recently in the machine-learning com-
munity, specifically sparse Bayesian regression [Tip-
ping, 2001,Wipf et al., 2004] and active learning [Fe-
dorov, 1972,MacKay, 1992]. Moreover, the results of
this machine-learning-based CS analysis significantly
advance the state of the art in CS. The encouraging
nature of this initial analysis is meant to introduce
the machine-learning community to a new problem for
which it is poised to make an important contribution.

2. Compressive-Sensing Inversion From
Bayesian Viewpoint

2.1. Compressive Sensing as Linear Regression

It was assumed at the start that f is compressible
in the basis B. Therefore, let ws represent an N -
dimensional vector that is identical to the vector w
for the M elements in w with largest magnitude; the
remaining N−M elements in ws are set to zero. Sim-
ilarly, we introduce a vector we that is identical to
w for the smallest N−M elements in w, with all re-
maining elements of we set to zero. We therefore have
w = ws +we, and

g = Φw = Φws +Φwe = Φws + ne, (2)

where ne= Φwe. Since it was assumed at the start
that Φ is constituted through random samples, the
components of ne may be approximated as a zero-
mean Gaussian noise as a consequence of Central-
Limit Theorem [Papoulis & Pillai, 2002] for large
N−M . We also note that the CS measurements may
be noisy, with the measurement noise, denoted by nm,
represented by a zero-mean Gaussian distribution, and
therefore

g = Φws + ne + nm = Φws + n, (3)

where the components of n are approximated as a zero-
mean Gaussian noise with unknown variance σ2.

The above analysis has converted the CS problem
of inverting for the sparse weights ws into a linear-
regression problem with a constraint (prior) that ws

is sparse, or more relevantly, sparse Bayesian regres-
sion [Tipping, 2001, Wipf et al., 2004]. Assuming
knowledge of Φ, the quantities to be estimated based

on the CS measurements g are the sparse weights ws

and the noise variance σ2. In a Bayesian analysis we
seek a full posterior density function for ws and σ2.

2.2. Sparseness Prior and MAP approximation

In a Bayesian formulation our understanding of
the fact that ws is sparse is formalized by plac-
ing a sparseness-promoting prior on ws. A widely
used sparseness prior is the Laplace density function
[Figueiredo, 2002]:

p(w|λ) = (λ/2)N exp(−λ

N∑
i=1

|wi|), (4)

where in (4) and henceforth we drop the subscript s
on w, recognizing that we are always interested in a
sparse solution for the weights. Given the CS measure-
ments g, and assuming the model in (3), it is straight-
forward to demonstrate that the solution in (1) cor-
responds to a maximum a posteriori (MAP) estimate
for w using the prior in (4).

3. Estimate of Full Posterior for Sparse
Weights

3.1. Hierarchical Sparseness Prior

The above discussion demonstrated that conventional
CS inversion for the weights w corresponds to a MAP
approximation to a Bayesian linear-regression analy-
sis, with a Laplace sparseness prior on w. This then
raises the question of whether the Bayesian analysis
may be carried further, to realize an estimate of the
full posterior on w and σ2.

Rather than imposing a Laplace prior on w, we de-
velop a hierarchical prior [Tipping, 2001, Figueiredo,
2002] that has similar properties but that allows conve-
nient conjugate-exponential analysis. Specifically, we
introduce the prior

p(w|α) =
N∏

i=1

N (wi|0, α−1
i ), (5)

where N (wi|0, α−1
i ) is a zero-mean Gaussian density

function with precision (inverse-variance) αi. We fur-
ther place the following Gamma prior on α

p(α|a, b) =
N∏

i=1

Γ(αi|a, b). (6)

The overall prior on w is evaluated as

p(w|a, b) =
N∏

i=1

∫ ∞

0

N (wi|0, α−1
i )Γ(αi|a, b)dαi. (7)
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Figure 1. Graphical model of the Bayesian CS formulation.

Density function Γ(αi|a, b) is the conjugate prior for
αi, when wi plays the role of observed data and
N (wi|0, α−1

i ) is a likelihood function; consequently the
integral

∫ ∞
0

N (wi|0, α−1
i )Γ(αi|a, b)dαi can be evalu-

ated analytically, and it corresponds to the Student-t
distribution [Tipping, 2001]. With appropriate choice
of the hyperparameters a and b, the Student-t distri-
bution is strongly peaked about wi=0, and therefore
the prior in (7) favors most wi being zero (i.e., it is a
sparseness prior). Similarly, we introduce the Gamma
prior Γ(α0|c, d) on the inverse of the noise variance
α0=1/σ2.

To see the advantage of the sparseness prior in (7),
consider the graphical structure of the model as re-
flected in Fig. 1, for generation of the observed data g.
Following consecutive blocks in Fig. 1 (following the
direction of the arrows), let pk represent the parameter
associated with block k, and pk+1 represents the next
parameter in the sequence. For all steps in Fig. 1, the
density function for pk is the conjugate prior for the
likelihood defined in terms of the density function for
pk+1, assuming that all parameters except pk are held
constant (i.e., all parameters other than pk temporar-
ily play the role of fixed data). This structural form is
very convenient for implementing iterative algorithms
for evaluation of the posterior density function for w
and α0. For example, one may conveniently imple-
ment a Markov Chain Monte Carlo (MCMC) [Gilks
et al., 1996] or, more efficiently and approximately,
a variational Bayesian (VB) analysis [Bishop & Tip-
ping, 2000]. While the VB analysis is efficient rela-
tive to MCMC, we here consider a type-II maximum-
likelihood (ML) analysis, with the objective of achiev-
ing highly efficient computations while still preserving
accurate results [Tipping, 2001].

3.2. The Bayesian CS algorithm

As shown by Tipping [2001], in the context of the rel-
evance vector machine (RVM), if g, α and α0 = 1/σ2

are known, then the posterior for w can be expressed

analytically as a multivariate Gaussian distribution
with mean and covariance:

µ = α0ΣΦT g, (8)
Σ = (A+ α0ΦT Φ)−1, (9)

where A = diag(α1, . . . , αN ). Further, the marginal
likelihood for α and α0, or equivalently, its logarithm
L(α, α0) can be expressed analytically by integrating
out the weights w, to yield

L(α, α0)= log p(g|α, α0)=log
∫

p(g|w, α0)p(w|α)dw

=−1
2

[
K log 2π + log |C|+ gT C−1g

]
, (10)

with C=σ2I+ΦA−1ΦT . Then a type-II ML solution
employs the point estimates for α and α0 that max-
imize (10). This can be implemented readily via the
EM algorithm or direct differentiation [Tipping, 2001],
to yield:

αnew
i = γi/µ

2
i , i ∈ {1, 2, ..., N}, (11)

with γi � 1 − αiΣii, where Σii is the ith diagonal
element from Σ in (9), and

1/αnew
0 =

||g − Φµ||22
N − ∑

i γi
. (12)

Note that αnew and αnew
0 are a function of µ and Σ,

while µ andΣ are a function of α and α0; this suggests
an iterative algorithm, where one iterates between (8)-
(9) and (11)-(12), and in this process αi becomes very
large for those wi that have insignificant amplitudes
for representation of g=Φw. Only a relatively small
set of wi, for which the corresponding αi remains rel-
atively small, contribute for representation of g, and
the level of sparseness (size of M) is determined auto-
matically [Wipf et al., 2004]. It is also important to
note that, as a result of the type-II ML solution, the
point estimates (rather than the posterior densities) of
α and α0 are sought. Therefore, there is no need to
set a, b, c and d on the Gamma hyperpriors.

While it is useful to have a measure of uncertainty in
the weights w, the quantity of most interest is the sig-
nal f = Bw. Since w is drawn from a multivariate
Gaussian distribution with mean and covariance de-
fined in (8)-(9), then f is also drawn from a multivari-
ate Gaussian distribution, with mean and covariance

E(f) = Bµ, (13)
Cov(f) = BΣBT . (14)

The diagonal elements of the covariance matrix in (14)
provide “error bars” on the accuracy of the inversion
of f , as represented in terms of its mean.
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While the iterative algorithm described above has been
demonstrated to yield a highly accurate sparse linear-
regression representation [Tipping, 2001], we note the
following practical limitation. When evaluating (9)
one must invert matrices of size N ×N , which has
complexity O(N3), thereby making this approach rel-
atively slow for data f of large dimension N . This
motivates development of a fast Bayesain algorithm
with the objective of achieving highly efficient compu-
tations comparable to existing CS algorithms, such as
OMP [Tropp & Gilbert, 2005] and StOMP [Donoho
et al., 2006].

Fortunately, this fast Bayesian algorithm has been de-
veloped in [Faul & Tipping, 2002] by analyzing the
properties of the marginal likelihood function in (10).
This enables a principled and efficient sequential addi-
tion and deletion of candidate basis function (columns
of Φ) to monotonically maximize the marginal likeli-
hood. Because of limited space, we omit the detailed
discussion of this fast algorithm, and refer the reader
to [Tipping & Faul, 2003] for more information. We
here only briefly summarize some of its key proper-
ties. Compared with the iterative algorithm presented
above, the fast algorithm operates in a constructive
manner, i.e., sequentially adds terms to the model
until all M nonzero weights have been added. So,
the complexity of the algorithm is more related to M
than N . Further, by using the matrix inverse identity,
the inverse operation in (9) has been implemented by
an iterative update formula with reduced complexity.
Detailed analysis shows that this fast algorithm has
complexity O(NM2), which is more efficient than the
original RVM, especially when the underlying signal
is truly sparse (M �N). Unlike other related CS al-
gorithms (e.g., OMP and StOMP), the fast algorithm
has the operation of deleting a basis function from the
model (i.e., setting αi=∞). This deletion operation is
the likely explanation for the improvement in sparsity
of this fast algorithm demonstrated in the experiments
(see Sec. 5). More importantly, while conventional CS
algorithms yield a point estimate for f , the Bayesian
analysis considered here also yields the error bars de-
fined in (14).

4. Adaptive Compressive Sensing

4.1. Selecting Projections to Reduce Signal
Uncertainty

In the original CS construction, the projections repre-
sented by Φ = [r1 . . . rK ]

T were constituted via i.i.d.
realizations of an underlying random variable [Tsaig
& Donoho, 2006]. In addition, previous CS algo-
rithms [Donoho, 2006,Tropp & Gilbert, 2005,Donoho

et al., 2006] focused on estimating w have employed a
point estimate like that in (1); such approaches do not
provide a measure of uncertainty in f , and therefore
adaptive design of Φ was not feasible. The Bayesian
CS (BCS) algorithm introduced in Sec. 3.2 allows effi-
cient computation of f and associated error bars, and
therefore one may consider the possibility of adaptively
selecting projections rk with the goal of reducing un-
certainty. Such a framework has been studied previ-
ously in machine learning under the name of experi-
ment design or active learning [Fedorov, 1972,MacKay,
1992]. Further, the error bars also give a way to deter-
mine how many measurements are enough for faithful
CS reconstruction, i.e., when the change in the uncer-
tainty is not significant, it may be assumed that one is
simply reconstructing the noise n in (3), and therefore
the adaptive sensing may be stopped.

As discussed above, the estimated posterior on the
signal f is a multivariate Gaussian distribution, with
mean E(f) = Bµ and covariance Cov(f) = BΣBT .
The differential entropy [Cover & Thomas, 1991] for f
therefore satisfies:

h(f) =
1
2
log |BΣBT |+ c =

1
2
log |Σ|+ c

= −1
2
log |A+ α0ΦT Φ|+ c, (15)

where c is a constant, independent of Φ. Recall that
A=diag(α1, . . . , αN ), and therefore the dependence of
the differential entropy on the observed CS measure-
ments g is defined by the point estimates of α and α0

(from the type-II ML estimates discussed in Sec. 3.2).

We may now ask which new projection rK+1 would
be optimal for minimizing the differential entropy in
(15). Toward this end, we augment Φ by adding a
(K+1)th row represented by rT

K+1. If we let hnew(f)
represent the new differential entropy as a consequence
of adding this new projection measurement, via the
matrix determinant identity we have

hnew(f) = h(f)− 1
2
log

[
1 + α0r

T
K+1Σ rK+1

]
, (16)

where α0 and Σ are based on estimates found using
the previous K projections. In order to minimize (16)
the next projection rK+1 must be designed to maximize
the variance of the expected measurement gK+1 since

rT
K+1Σ rK+1=rT

K+1Cov(w) rK+1=Var(gK+1). (17)

In other words, rK+1 must be selected to constitute the
measurement gK+1 for which the data is most uncer-
tain (and hence access to the associated measurement
would be most informative).
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There are multiple ways this adaptive algorithm may
be utilized in practice. If it is possible to design new
projections rK+1 adaptively “on the fly”, then one
might perform an eigen-decomposition of the matrix
Σ, and select for representation of rK+1 the eigenvec-
tor with largest eigenvalue. Alternatively, if from a
hardware standpoint such flexibility in design of rK+1

is not feasible, then one might a priori design a library
L of possible next projections, with rK+1 selected from
L with the goal of maximizing (17).

An additional issue needs to be clarified if the eigen-
vector of Σ is used for the next projection rK+1. Be-
cause of the sparse Bayesian solution, Σ only employs
elements corresponding to the associated nonzero com-
ponents ofw found based on the fast algorithm (i.e., Σ
is reduced in general to a small matrix). So when con-
structing the next projection based on the eigenvector,
some entries of rK+1 will be empty. If we impute all
those empty entries with zeros, we are under the risk
of being wrong. The initial estimate of w can be in-
accurate; if we impute with zeros, the estimate will
be always biased and has no chance to be corrected
since the corresponding contributions from underlying
true w are always ignored. To mitigate this problem,
we impute those empty entries with random samples
drawn i.i.d. from a Gaussian distribution N (0, 1). Af-
ter the imputation, we re-scale the magnitude of the
imputed entries to 0.01. In this way, we utilize the op-
timized projection, and at the same time allow some
contributions from the empty entries. Overall, the fi-
nal projection rK+1 has the magnitude ||rK+1||2 = 1.01.

4.2. Approximate Adaptive CS

The error bars on the estimate of f play a critical role
in implementing the above adaptive CS scheme, with
this a direct product from the Bayesian analysis. Since
there are established CS algorithms based on a point
estimate of w, one may ask whether these algorithms
may be modified, utilizing insights from the Bayesian
analysis. The advantage of such an approach is that,
if possible, one would access some of the advantages of
the Bayesian analysis, in an approximate sense, while
being able to retain the advantages of existing CS al-
gorithms.

The adaptive algorithm in (16) relies on computa-
tion of the covariance matrix Σ = (A+α0ΦT Φ)−1;
since Φ is assumed known, this indicates that what
is needed are estimates for α0 and α, the latter re-
quired for the diagonal matrix A. From (12) we have
σ2 = 1/α0 = ||g−Φµ||22/(N −∑

i γi), where the de-
nominator N−∑

i γi may be viewed as an estimate for
the number of components of the weight vector w that

have negligible amplitude. Consequently, assume that
a CS algorithm such as OMP or StOMP is used to
yield a point estimate of the weights w, denoted wp,
and assume that there are M0 non-zero elements in
wp; then one may approximate the “noise” variance
as σ2 = ||g − Φwp||22/(N −M0).

Concerning the diagonal matrix A, it may be viewed
as a regularization of the matrix (α0ΦT Φ), to assure
that the matrix inversion is well posed. While the
Bayesian analysis in Sec. 3.2 indicates that the loading
represented by A should be non-uniform, we may sim-
ply make A diagonalized uniformly, with value corre-
sponding to a small fraction of the average value of the
diagonal elements of (α0ΦT Φ). In Sec. 5, when pre-
senting example results, we make comparisons between
the rigorous implementation discussed in Sec. 4.1 and
the approximate scheme discussed here (as applied to
the BCS algorithm). However, similar modifications
may be made to other related algorithms, such as OMP
and StOMP.

5. Example Results

We test the performance of BCS on several exam-
ple problems considered widely in the CS literature,
with comparisons made to Basis Pursuit (BP) [Chen
et al., 1999] and StOMP [Donoho et al., 2006]. While
BP is a relatively computationally expensive algorithm
that involves linear programming, StOMP may be
one of the state-of-the-art fast CS algorithms. In the
experiments we evaluate the reconstruction error as
||fmethod−f ||2/||f ||2. All the computations presented
here were performed using Matlab run on a 3.4GHz
Pentium machine.

5.1. BCS and Projection Optimization

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0
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1

( a )  O r i g i n a l  S i g n a l

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0
− 1

0

1

( b )  R e c o n s t r u c t i o n  w i t h  B P ,  K = 1 0 0

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0
− 1

0

1

( c )  R e c o n s t r u c t i o n  w i t h  B C S ,  K = 1 0 0

Figure 2. Reconstruction of Spikes. (a) Original signal; (b)
Reconstruction with BP, errBP=0.158, tBP=1.56 secs; (c)
Reconstruction with BCS, errBCS=0.015, tBCS=0.63 secs.
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Figure 3. Comparison of adaptive and random projections, with the first 40 projections performed randomly. (a) Recon-
struction error of BCS with random projections, optimized projections (Sec. 4.1) and approximated projections (Sec. 4.2);
the results are averaged over 100 runs; (b) the variances of the reconstruction error of BCS with random projections and
optimized projections (Sec. 4.1); the variance for the approximate scheme in Sec. 4.2 is very similar to that for Sec. 4.1,
and thus is omitted to improve visibility.

In the first example we consider a length N=512 sig-
nal that contains M= 20 spikes created by choosing
20 locations at random and then putting ±1 at these
points (Fig. 2(a)). The projection matrix Φ is con-
structed by first creating a K×N matrix with i.i.d.
draws of a Gaussian distribution N (0, 1), and then the
rows of Φ are normalized to unit amplitude. To sim-
ulate measurement noise, zero-mean Gaussian noise
with standard deviation σm = 0.005 is added to each
of the K measurements that define the data g. In
the experiment K = 100, and the reconstructions are
implemented by BP and BCS. For the BP implemen-
tation, we used the 	1-magic package available online
at http://www.acm.caltech.edu/l1magic/.

Figures 2(b-c) demonstrate the reconstruction results
with BP and BCS, respectively. Because it is a noisy
reconstruction problem, BP cannot recover the under-
lying sparse signal exactly. Consequently, the BCS re-
construction is much cleaner than BP, asM= 20 spikes
are correctly recovered with (about 10 times) smaller
reconstruction error relative to BP. In addition, BCS
yields “error-bars” for the estimated signal, indicating
the confidence for the current estimation. Regarding
the computation time, BCS also outperforms BP.

As discussed in Sec. 4, the Bayesian analysis also al-
lows designing projection matrix Φ for adaptive CS.
In the second experiment, we use the same dataset as
in Fig. 2 and study the performance of BCS for pro-
jection design. The initial 40 measurements are con-
ducted by using the random projections as in Fig. 2,
except that the rows of Φ are normalized to 1.01
for the reasons discussed in Sec. 4.1. The remaining
80 measurements are sequentially conducted by op-
timized projections, with this compared to using ran-
dom projections. In the experiment, after each projec-

tion vector rK+1 is determined, the associated recon-
struction error is also computed. For the optimized
projection, rK+1 is constructed by using the eigenvec-
tor of Σ that has the largest eigenvalue. When exam-
ining the approximate scheme discussed in Sec. 4.2,
we used 10% of the average value of the diagonal el-
ements of (α0ΦT Φ) for diagonal loading. Because of
the randomness in the experiment (i.e., the initial 40
random projections and the empty-entries imputation
for rK+1, etc.), we execute the experiment 100 times
with the average performance reported in Fig. 3.

It is demonstrated in Fig. 3 that the reconstruction er-
ror of the optimized projection is much smaller than
that of the random projection, indicating the superior
performance of this optimization. Further, the approx-
imate scheme in Sec. 4.2 yields results very comparable
to the more-rigorous analysis in Sec. 4.1. This suggests
that existing CS software may be readily modified to
implement the optimization procedure, and yield re-
sults comparable to that of the full BCS solution.

5.2. BCS vs. BP and StOMP

In the following set of experiments, the performance of
BCS is compared to BP and StOMP (equipped with
CFDR and CFAR thresholding) on two example prob-
lems included in the Sparselab package that is available
online at http://sparselab.stanford.edu/. Fol-
lowing the experiment setting in the package, all the
projection matrix Φ here are drawn from a uniform
spherical distribution [Tsaig & Donoho, 2006].

5.2.1. Random-Bars

Figure 4 shows the reconstruction results for Random-
Bars that has been used in [Tsaig & Donoho, 2006].
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Figure 4. Reconstruction of Random-Bars with hybrid CS.
(a) Linear reconstruction from K=4096 samples, errLIN=
0.2271; (b) Reconstruction with CFDR, errCFDR=0.5619,
tCFDR=4 secs; (c) Reconstruction with CFAR, errCFAR=
0.2271, tCFAR = 5 secs; (c) Reconstruction with BCS,
errBCS=0.2271, tBCS=15 secs. BP took 108 secs with
the reconstruction error 0.2279, which is not shown here.

We used the Haar wavelet expansion, which is nat-
urally suited to images of this type, with a coarsest
scale j0 = 3, and a finest scale j1 = 6. Figure 4(a)
shows the result of linear reconstruction withK= 4096
samples, which represents the best performance that
could be achieved by all the CS implementations used,
whereas Figs. 4(b-d) have results for the hybrid CS
scheme [Tsaig & Donoho, 2006] with K = 1152 hy-
brid compressed samples. It is demonstrated that BCS
and StOMP with CFAR yield the near optimal re-
construction error (0.2271); among all the CS algo-
rithms considered StOMP is the fastest one. How-
ever, as we have noted, the performance of StOMP
strongly relies on the thresholding parameters selected.
For the Random-Bars problem considered, the per-
formance of StOMP with CFDR is very sensitive to
its parameter-setting, with one typical example result
shown in Fig. 4(b).

5.2.2. Mondrian

Figure 5 displays a photograph of a painting by Piet
Mondrian, the Dutch neo-plasticist. Despite being a
simple geometric example, this image still presents a
challenge, as its wavelet expansion is not as sparse as
the examples considered above. We used a multiscale
CS scheme [Tsaig & Donoho, 2006] for image recon-
struction, with a coarsest scale j0 = 4, and a finest
scale j1= 6 on the “symmlet8” wavelet. Figure 5(a)
shows the result of linear reconstruction withK= 4096
samples, which represents the best performance that
could be achieved by all the CS implementations used,
whereas Figs. 5(b-d) have results for the multiscale CS
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( b )  M u l t i s c a l e  C S  w i t h  C F D R ,  K = 2 7 1 3
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( c )  M u l t i s c a l e  C S  w i t h  C F A R ,  K = 2 7 1 3
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( d )  M u l t i s c a l e  C S  w i t h  B C S ,  K = 2 7 1 3
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Figure 5. Reconstruction of Mondrian with multiscale CS.
(a) Linear reconstruction from K=4096 samples, errLIN=
0.1333; (b) Reconstruction with CFDR, errCFDR=0.1826,
tCFDR=10 secs; (c) Reconstruction with CFAR, errCFAR=
0.1508, tCFAR = 28 secs; (c) Reconstruction with BCS,
errBCS=0.1503, tBCS=18 secs. BP took 162 secs with
the reconstruction error 0.1416, which is not shown here.

scheme with K=2713 multiscale compressed samples.
In the example results in Figs. 5(b-c), we used the
same parameters-setting for StOMP as those used in
the Sparselab package. It is demonstrated that all the
CS implementations yielded a faithful reconstruction
to the original image, while BCS produced the second
smallest reconstruction error (0.1503) using the second
smallest computation time (18 secs).

Table 1. Summary of the performances of BP, StOMP and
BCS on Mondrian.

BP CFDR CFAR BCS
# Nonzeros 3840 1766 926 615
Time (secs) 162 10 28 18
Reconst. Error 0.1416 0.1826 0.1508 0.1503

To understand why BCS is more efficient than StOMP
on this problem, we checked the number of nonzero
weights recovered by BCS and StOMP, with the re-
sults reported in Table 1. Evidently, BCS found the
sparsest solution (with 615 nonzeros) relative to the
two StOMP implementations, but yielded the second
smallest reconstruction error (0.1503). This indicates
that although each iteration of StOMP allows mul-
tiple nonzero weights to be added into the “active
set” [Donoho et al., 2006], this process may be a too
generous usage of weights without reducing the recon-
struction error. The sparser solution of BCS is the
likely explanation of its relative higher speed compared
to StOMP in this example.
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6. Conclusions

Compressive sensing has been considered from a
Bayesian perspective. It has been demonstrated that
by utilizing the previously derived algorithms (rele-
vance vector machine) from the sparse Bayesian liter-
ature, problems in CS can be solved more effectively.
In practice we have found that the results from this
Bayesian analysis are often sparser than existing CS
solutions [Chen et al., 1999,Donoho et al., 2006]. On
the examples considered from the literature, the BCS
solution typically has computation time comparable
to state-of-the-art algorithms such as StOMP [Donoho
et al., 2006]; in some cases BCS is even faster as a con-
sequence of the improved sparsity. We have also con-
sidered adaptive CS by optimizing the projection ma-
trix Φ. Experiments on synthetic data demonstrate a
significantly accelerated rate of convergence compared
to the original CS construction. Finally, a simple ap-
proximate scheme has been introduced, which allows
existing CS algorithms to benefit immediately from
this Bayesian analysis.

There is a clear connection between CS and regres-
sion shrinkage and selection via the Lasso [Tibshirani,
1996, Efron et al., 2004] as both focus on solving the
objective function (1). Research on Lasso has pro-
duced algorithms that might have some relevance to
CS and BCS. In addition to this, other possible areas
of future research may include simultaneous inversion
of multiple data sets, borrowing ideas from multi-task
learning [Caruana, 1997], and a theoretical analysis of
adaptive CS, which can be an important complement
to the existing analysis for the conventional CS formu-
lation [Haupt & Nowak, 2006].
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