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Abstract

In this paper we present avariational Bayes(VB) framework for learning continuous hidden Markov

models (CHMMs), and we examine the VB framework within active learning. Unlike a maximum

likelihood or maximuma posteriori training procedure, which yield a point estimate of the CHMM

parameters, VB-based training yields an estimate of the full posterior of the model parameters. This is

particularly important for small training sets, since it gives a measure of confidence in the accuracy of

the learned model. This is utilized within the context of active learning, for which we acquire labels

for those feature vectors for which knowledge of the associated label would be most informative for

reducing model-parameter uncertainty. Three active learning algorithms are considered in this paper: (i)

query by committee (QBC), with the goal of selecting data for labeling that minimize the classification

variance; (ii) a maximum expected information gain method that seeks to label data with the goal of

reducing the entropy of the model parameters; (iii) an error-reduction-based procedure that attempts to

minimize classification error over the test data. The experimental results are presented for synthetic and

measured data. We demonstrate that all of these active learning methods can significantly reduce the

amount of required labeling, compared to random selection of samples for labeling.
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I. I NTRODUCTION

There has recently been an increasing interest in the area of variational Bayes (VB) learning

[1]–[6]. Compared to standard maximum likelihood (ML) or maximuma posteriori (MAP)

learning, VB does not yield a single point estimate of the model parameters. Rather, an ensemble

of models are learned, with the goal of estimating the posterior density function on the model

parameters, given a prescribed set of training data. This framework has often proven to be less

sensitive to overfitting, and since the full posterior of the model parameters is available, it is

well suited for active learning.

After the VB algorithm is trained, testing (classification) is performed by integrating out, in

a Bayesian sense, the model parameters. Consequently, classification is not performed based

on a single (point) estimate of parameters, but on a weighted sum over the ensemble. In many

applications this framework has been found to be less sensitive to overfitting,vis-à-visa ML/MAP

training procedure. The VB procedure is a practical implementation of Bayesian learning for

the true posterior probabilities of model parameters. Instead of computing the true posterior

probabilities of the model directly, the VB approximates the true posterior to a variational one

by maximizing a negative free energy. The resulting algorithm is closely related to the EM

algorithm, and each iteration guarantees to monotonically increase the negative free energy or

leave it unchanged, until converges is achieved at a local maximum. MacKay presents in [4]

VB learning for a discrete hidden Markov model (HMM). We here present VB learning for a

continuous HMM. Besides providing a new learning algorithm, we focus on active learning for

HMMs, exploiting the VB machinery. We demonstrate that with the posterior probability of the

model parameters estimated via VB, active learning can be solved in a convenient manner. Two

previous active-learning criterions, minimizing the classification variance and minimizing the

model’s variance, can be implemented easily, while previously they were either computationally

inefficient or intractable for continuous HMMs (CHMMs) [7]–[9].

The remainder of the paper is organized as follows. In Sec. II we present variational Bayes

learning of continuous HMMs. The application of variational Bayes to active learning is il-

lustrated in Sec. III, by extending the query by committee (QBC) and the maximum expected

information gain (MEIG) active learning algorithms. We also consider an active-learning algo-

rithm based on minimizing classification error. The relationship among these three active-learning
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algorithms is also addressed in detail. In Sec. IV we present experimental results on synthetic

and measured data. The conclusions and future work are addressed in Sec. V.

II. VARIATIONAL BAYES LEARNING OF CONTINUOUS HIDDEN MARKOV MODELS

Parameter estimation is a fundamental problem in system identification, pattern classification,

and signal processing. We assume a (typically small) set of data is available from the system of

interest. The objective is to fit a model to the data, to best describe the system. There are two

broad treatments of this problem: 1) The model parameters are treated as fixed but unknown, and

2) the model parameters are treated as random variables [10]. The former treatment results in

maximum likelihood (ML) or maximuma posteriori (MAP) estimation. In a Bayesian analysis,

of interest for (2), before observing any data one assigns a prior distribution over the model

parameters; after observing the data, Bayes’ rule is used to infer their posterior distributions. In

this way, themarginal likelihoodor “evidence” can be obtained by integrating out the model

parameters:

p(x) =

∫
p(x|Φ)p(Φ)dΦ (1)

where x represents the observed data andΦ denotes the model parameters. Themarginal

likelihood or “evidence” does not fit any single model to the data, but regards all model

parameters as possible with different probabilities, defined viap(Φ). However, the Bayesian

integration is typically computationally intractable, even in very simple cases. Most existing

methods, such as Markov Chain Monte Carlo (MCMC) [11] and the Laplace approximation [6]

either require vast computational resources to get accurate results or crudely approximate all the

posteriors via a normal distribution. Between these two extremes, the VB method attempts to

approximate the integration as accurately as possible while remaining computationally tractable

[6].

We are interested in estimating the parameters of a continuous hidden Markov model (CHMM),

in which a Gaussian mixture model is used for the state-dependent density function. A traditional

method for estimating the parameters of a CHMM employs an ML estimation based on the

expectation-maximization (EM) algorithm [12], [13]. In the EM algorithm the unobserved state

sequence is treated as hidden. The algorithm starts from an initial guess of the model parameters,

and iteratively updates them via the E and M steps. In the E step, the model parameters are fixed
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and the probability of the hidden variables are estimated based on the current model. In the M

step, the probability of the hidden variables resulting from the E step is fixed and the model

parameters are updated by maximizing the expected complete-data likelihood over the hidden

variables. It is proved in [13] that the EM algorithm is guaranteed to increase the likelihood

or leave it unchanged until converges to a local maximum. In Neal and Hinton’s paper [1],

the EM algorithm is interpreted from a variational perspective. The M step remains unchanged.

However, the E step is replaced by optimizing a variational posterior over the hidden variables,

to maximize the “free energy”. Similarly, in the Bayesian learning framework, since the model

parameters are also treated as random or hidden variables, the varitional approximation can be

employed on both the hidden variables and model parameters. From this perspective, variational

Bayes is also an iterative technique that is similar to the EM algorithm and whose convergence

is guaranteed. In the following, we derive the variational Bayes implementation of the CHMM,

in a manner similar to MacKay [4], who considered a discrete hidden Markov model (DHMM).

Consider anN -state HMM, with the state-dependent observation defined by a Gaussian

mixture. For notational convenience, it is assumed that all states have the same number of

mixture components,K, and the dimensionality of the feature vectors isd. Then an HMM can

be modeled asΦ = {πN , AN×N , CN×K , ΘN×K}, whereπ is the initial-state probability vector,

A is the transition matrix,C is the mixture-coefficient matrix, andΘ is the parameter matrix

composed of the Gaussian parametersθik = {µik, Rik} for thekth mixture component of theith

state, with meanµik and precision matrixRik, which is the inverse of the covariance matrix.

For an observation sequenceX = (x1, x2, · · · , xT ), the associated complete-data isY =

(X,S, L), whereS = (s1, s2, · · · , sT ) is the unobserved state sequence, andL = (l1, l2, · · · , lT )

is the indicator sequence, which indicates which mixture component generates the observation.

Thus,st ∈ [1, N ] andlt ∈ [1, K]. For given model parametersΦ, the probability of the complete

data can be expressed as

p(X,S, L|Φ) = πs1 ·
T−1∏
t=1

astst+1 ·
T∏

t=1

cstltf(xt|θstlt) (2)

and the likelihood of the model parametersΦ given the dataX is

p(X|Φ) =
∑
S,L

πs1 ·
T−1∏
t=1

astst+1 ·
T∏

t=1

cstltf(xt|θstlt) (3)
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By Bayes’ rule, the posterior density for the model parameters can be expressed as

p(Φ|X) =
p(X|Φ)p(Φ)∫
p(X|Φ)p(Φ)dΦ

(4)

where in the denominator of (4) we must integrate (sum) over all parameters, covering the

complete range of each parameter. The computational cost required for the denominator is what

has motivated previous ML/MAP solutions (which simply maximize the numerator in (4)). The

VB algorithm represents an approximate and computationally tractable means of computing

(4), and approximates this integration by maximizing a lower bound [1], [6], which can be

derived from a fundamental relationship between the log-likelihood, negative free energy and

the Kullback-Leibler (KL) divergence. The marginal likelihood can be expressed as

p(X) =
p(X, S, L, Φ)

p(S, L, Φ|X)
(5)

In this case, both the hidden variables and model parameters are all treated as random variables.

Taking the logarithm and then the expectation with respect to the distributionq(S, L, Φ) on both

sides, we obtain

log p(X) =

∫
q(S, L, Φ) log p(X,S, L, Φ)dSdLdΦ−

∫
q(S, L, Φ) log p(S, L, Φ|X)dSdLdΦ

(6)

where the distributionq(S, L, Φ) is called the approximate or variational posterior of the model

parameters and hidden variables. By re-arranging (6), we obtain

log p(X) = F (q) + KL(q||p) (7)

where

F (q) =

∫
q(S, L, Φ) log

p(X, S, L, Φ)

q(S, L, Φ)
dSdLdΦ (8)

KL(q||p) =

∫
q(S, L, Φ) log

q(S, L, Φ)

p(S, L, Φ|X)
dSdLdΦ (9)

The termF (q) is known as the negative free energy used in statistical physics andKL(q||p)

is the Kullback-Leibler (KL) divergence between the approximate and true posterior. Since the

KL divergence is non-negative and is zero for identical distributions, this indicates thatF (q) is

a strict lower bound onlog p(X),

log p(X) ≥ F (q) (10)
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with equality if the approximate posterior density equals the true posterior density, i.e.,q(S, L, Φ) =

p(S, L, Φ|X). The aim of VB is to maximize this lower bound by tuning the variational posterior

q(S, L, Φ) such that as the variational posterior approaches the true posterior, the bound becomes

tight, thus the marginal likelihood can be approximated efficiently.

For the computation of the negative free energy, two key issues remain to be addressed: the

choice of the form of the variational density and the prior distribution of model parameters. We

need to choose a density form that is tractable and meanwhile can make a good approximation

to the true posterior. One choice is a factorized form

q(S, L, Φ) = q(S)q(L)q(π)q(A)q(C)q(Θ) (11)

which has been successfully applied in many applications of the variational method [2], [4], [5].

A natural choice for the prior overπ, the rows ofA and the rows ofC is the Dirichlet distribution,

since the Dirichlet distribution is the conjugate prior over the multinomial distribution [4].

Similarly, we choose the Normal-Wishart distribution as the prior over the Gaussian distribution

[6], [14]. Thus, the prior on the model parameters can be expressed as

p(Φ) = p(π)p(A)p(C)p(Θ) (12)

where

p(π) = Dir(π1, · · · , πN |uπ
1 , · · · , uπ

N) (13)

p(A) =
N∏

i=1

Dir(ai1, · · · , aiN |uA
i1, · · · , uA

iN) (14)

p(C) =
N∏

i=1

Dir(ci1, · · · , ciK |uC
i1, · · · , uC

iK) (15)

p(Φ) =
N∏

i=1

K∏

k=1

NW (µik, Rik|aik, bik, λik,mik) (16)

The form of the Dirichlet distribution and the Normal-Wishart distribution are discussed in the

Appendix.

M Step: With the variational posterior on hidden variables fixed atq(S, L), update the

variational posterior on model parametersq(Φ) to maximizeF (q).
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We can substitute (2) and (11)-(16) into (8) to yield

F (q) =

∫
q(S)q(L)q(π)q(A)q(C)q(Φ)[log πs1 +

T−1∑
t=1

log astst+1 +
T∑

t=1

log cstlt

+
T∑

t=1

log f(xt|θstlt) + log p(π) + log p(A) + log p(C) + log p(Θ)

− log q(S)− log q(L)− log q(π)− log q(A)− log q(C)− log q(Φ)]dSdLdΦ

= F (q(π)) + F (q(A)) + F (q(C)) + F (q(Φ)) + H(q(S, L)) (17)

In the equation above, the last term is constant sinceq(S, L) is fixed for the M step and is

ignored in the subsequent optimization steps. The independence among the functions overq(π),

q(A), andq(Φ) enables us to optimize them separately.

1. Optimization of q(A), q(π) and q(C)

By collecting all the quantities related to together, we obtain the expression

F (q(A)) =

∫
q(A)

∑
S

q(S)
T−1∑
t=1

log astst+1dA+

∫
q(A) log p(A)dA−

∫
q(A) log q(A)dA (18)

Further, we define a quantity

wt
ij =

∑
S

q(S)δ(st = i, st+1 = j) = q(st = i, st+1 = j) (19)

which is similar to the quantityξt(i, j) defined in [12] for the probability of being in statei at

time t, and statej at time t + 1. Then, we have

F (q(A)) = −
∫

q(A) log


 q(A)

∏N
i,j=1 a

W A
ij−1

ij


 dA (20)

where

WA
ij =

T−1∑
t=1

wt
ij + uA

ij (21)

By Gibbs inequality,F (q(A)) is maximized with respect toq(A) by

q(A) =
N∏

i=1

Dir(ai1, · · · , aiN |WA
i1 , · · · ,WA

iN) (22)

which is a product of Dirichlet distributions with the hyperparametersWA
ij .
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Similarly, we can optimizeF (q) with respect toq(π), q(C) separately by using a similar

procedure and obtain the optimizedq(π), q(C) expressed as

q(π) = Dir(π1, · · · , πN |W π
1 , · · · ,W π

N) (23)

q(C) =
N∏

i=1

Dir(ci1, · · · , ciK |WC
i1 , · · · ,WC

iK) (24)

where

W π
i = wπ

i + uπ
i (25)

WC
ik =

T∑
t=1

wt
ik + uC

ik (26)

wπ
i =

∑
S

q(S)δ(s1 = i) = q(s1 = i) (27)

wt
ik =

∑
S,L

q(S)q(L)δ(st = i, lt = k) = q(st = i, lt = k) (28)

For the similar definitions to the conventional EM training, the quantitieswπ
i , wt

ij andwt
ik can

all be calculated using the forward-backward algorithm [12].

2. Optimization of q(Φ)

By collecting all the quantities related toq(Φ) together, we obtain the expression

F (q(Θ)) =

∫
q(Θ)

∑
S,L

q(S)q(L)
T∑

t=1

log f(xt|θstlt)dΘ+

∫
q(Θ) log p(Θ)dΘ−

∫
q(Θ) log q(Θ)dΘ

(29)

With wt
ik defined in (28), we obtain

F (q(Θ)) = −
∫

q(Θ) log

(
q(Θ)∏N

i=1

∏K
k=1

∏T
t=1 fwt

ik(xt|θik)× p(θik)

)
dΘ (30)

The optimizedq(θik) becomes

q(θik) =
T∏

t=1

fwt
ik(xt|θik)× p(θik) =

T∏
t=1

fwt
ik(xt|µik, Rik)× p(µik, Rik|aik, bik, λik,mik)

=
(λik/2π)d/2

Z(aik, bik)× (2π)dwik/2
|Rik|

aik+wik−d

2 exp

[
−λ′ik

2
(µik −m′

ik)
T Rik(µik −m′

ik)

]

× exp

[
−1

2
Tr(b′ikRik)

]
(31)
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where

wik =
T∑

t=1

wt
ik (32)

x̄ik =
T∑

t=1

wt
ikxt/wik (33)

Sik =
T∑

t=1

wt
ik(xt − x̄ik)(xt − x̄ik)

T (34)

a′ik = aik + wik (35)

b′ik = bik + Sik +
λikwik

λik + wik

(mik − x̄ik)(mik − x̄ik)
T (36)

λ′ik = λik + wik (37)

m′
ik =

λikmik + wikx̄ik

λik + wik

(38)

E Step: With the variational posterior on model parametersq(Φ) fixed, update the variational

posterior on hidden variablesq(S, L) to maximizeF (q).

By substituting (2) and (11)-(16) into (8), and re-arranging, the negative free energy function

can be expressed as:

F (q) = F (q(S, L))−KL(q(Φ)||p(Φ)) (39)

where

F (q(S, L)) =
∑

S

q(S)

∫
q(π) log πs1dπ +

∑
S

q(S)

∫
q(A)

T−1∑
t=1

log astst+1dA

+
∑
S,L

q(S, L)

∫
q(C)

T∑
t=1

log cstltdC +
∑
S,L

q(S, L)

∫
q(Θ)

T∑
t=1

log f(xt|θstlt)dΘ

−
∑
S,L

q(S, L) log q(S, L) (40)

Sinceq(Φ) is fixed, the second term in (39) is constant. We only need to optimize the first term.
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We start by defining

log π∗s1
=

∫
q(π) log πs1dπ = ψ(W π

s1
)− ψ(W π

0 ) (41)

log a∗stst+1
=

∫
q(A) log astst+1dA = ψ(WA

stst+1
)− ψ(WA

st0) (42)

log c∗stlt =

∫
q(C) log cstltdC = ψ(WC

stlt)− ψ(WC
st0) (43)

log f ∗(xt|θstlt) =

∫
q(Θ) log f(xt|θstlt)dΘ

= −d

2
log 2π − 1

2
log |bstlt

2
|+ 1

2

d∑
i=1

ψ(
astlt + 1− i

2
)

− 1

2
astlt(xt −mstlt)

T b−1
stlt

(xt −mstlt)−
d

2λstlt

(44)

whereψ(·) is the digamma function defined asψ(x) = ∂
∂x

log Γ(x); W π
0 , WA

st0 and WC
st0 are

strength of their associated Dirichlet distributions.

Then substituting (41)-(44) into (40), we obtain

F (q(S, L)) = −
∑
S,L

q(S, L) log

(
q(S, L)

π∗s1
·∏T−1

t=1 a∗stst+1
·∏T

t=1 c∗stlt
f ∗(xt|θstlt)

)
(45)

The optimizedq(S, L) becomes

q(S, L) =
1

Z
· π∗s1

·
T−1∏
t=1

a∗stst+1
·

T∏
t=1

c∗stltf
∗(xt|θstlt) (46)

with the normalizing constant yielding a probability density. Comparing with (2), we notice that

Z = q(X|Φ∗) (47)

is the approximate likelihood of the optimized modelΦ∗, which can be computed efficiently by

the forward-backward algorithm [12].

Convergence

The variational Bayes approach is a generalization of the conventional EM algorithm [12],

[13]. Each iteration guarantees to increase the negative free energy or leave it unchanged, until it

converges to a local maximum. The negative free energy is an important quantity to approximate

the marginal likelihood, with this critical in model selection and density estimation [6]. We
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terminate the algorithm when the change in the negative free energy is negligibly small, and this

quantity can be calculated by substituting (46)-(48) into (39)

F (q) = F (q(S, L))−KL(q(Φ)||p(Φ))

= log q(X|Φ∗)−KLDir(q(π)||p(π))−KLDir(q(A)||p(A))

−KLDir(q(C)||p(C))−KLNW (q(Θ)||p(Θ)) (48)

where the KL divergence is between the variational posterior and the prior distribution. The KL

divergences of Dirichlet and Normal-Wishart distribution are discussed in the Appendix.

Computation of the predictive likelihood

For the classification task, the ultimate goal of Bayesian learning is to compute the pre-

dictive likelihood. In the Bayesian framework, the predictive likelihood of a test sequence

x = (x1, · · · , xT ), given a set of training dataDl, is obtained by averaging over all models

and weighting each model by its posterior:

p(x|Dl) =

∫
p(x|Φ)p(Φ|Dl)dΦ (49)

The true posterior is unknown. However, we may approximate it with a variational posterior

resulting from the VB. The approximate predictive likelihood can therefore be expressed as

p(x|Dl) ≈
∫

p(x|Φ)q(Φ)dΦ

=

∫ ∑
S,L

πs1

T−1∏
t=1

astst+1

T∏
t=1

cstst+1f(xt|θstlt) · q(π)q(A)q(C)q(Θ)dπdAdCdΘ

=
∑
S,L

[∫
πs1q(π)dπ ·

∫ T−1∏
t=1

astst+1q(A)dA ·
∫ T∏

t=1

cstltq(C)dC ·
∫ T∏

t=1

f(xt|θstlt)q(Θ)dΘ

]

=
∑
S,L

[
E(πst) · E

(
T−1∏
t=1

astst+1

)
· E

(
T∏

t=1

cstlt

)
· E

(
T∏

t=1

f(xt|θstlt)

)]
(50)

Although it can be expressed analytically, this quantity is still intractable since the states, mixture

component indicators and model parameters are coupled together. An approximation to this

quantity is to assume that the states, indicators and model parameters are independent of each

other,

p(x|Dl) ≈
∑
S,L

[
E(πs1) ·

T−1∏
t=1

E(astst+1) ·
T∏

t=1

E(cstlt) · E (f(xt|θstlt))

]
(51)
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where

E(πs1) = πs1/π0, E(astst+1) = astst+1/ast0, E(cstlt) = cstlt/cst0

E(f(xt|θstlt)) =

(
λstlt

π(λstlt + 1)

)d/2

· |bstlt|astlt
/2

|bstlt + ∆bstlt |(astlt
+1)/2

· Γ((astlt + 1)/2)

Γ((astlt + 1− d)/2)
(52)

with

∆bstlt =
λstlt

λstlt + 1
(mstlt − xt)(mstlt − xt)

T (53)

The independence assumption resumes the first-order Markovian property. Thus, the (52) can

be evaluated efficiently by the forward-backward algorithm [12]. We notice that the approxima-

tion in (52) results in evaluating the integrand still at a single value of . However, this point

estimation is neither the maximum likelihood nor the maximuma posterioriestimation.

III. A CTIVE LEARNING WITH CONTINUOUS HIDDEN MARKOV MODELS

Learning may be more effective if the learner can actively participate in the learning process

(i.e., in selection of the labeled data). Compared to conventional supervised learning, in which

the learner “passively” receives the labeled data and generates a learned model, in active learning

we start with a small set of labeled data, and identify those unlabeled examples that would be

most informative if the associated label were available; the labels redeemed to be informative are

subsequently queried (acquired). Such a setting is critical in machine learning tasks for which

acquiring labels is expensive or time consuming, and therefore we prioritize those items for

labeling that are most informative.

Active learning has been a focus of significant research for many years. It has demonstrated

success in a wide range of learning models, such as: naive Bayes [7], [15], the SVM [16], and in

neural networks [8]. Depending on the data source, the active learning settings can be classified

in two broad categories:pool-based active learning[7], [15], [17]–[19] andmembership queries

[8], [9]. In pool-based active learning, the learner is provided with a fixed pool of unlabeled

data and the learner is only allowed to choose data from the pool, and request the label. In

membership queries, the learner has the control to construct the data in the data space and

request the label. In the task of sequential data classification, such as the HMMs, a large pool of

unlabeled sequential data is often available. Thus, we only focus on pool-based active learning.

To our knowledge, there are very few previous studies on active learning focused on HMMs.
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As indicated above, the general idea in active learning is to choose that unlabeled sample that

would be most informative if the associated label were made available for training. In terms

of measuring informativeness, the algorithms can be classified as animplicit measureand an

explicit measure[19]. In the context ofexplicit measure, Cohn [9] states that if the learner is

unbiased, the informativeness of an example can be assessed by the expected decrease in the

overall variance of the model’s prediction. Similarly, within a Bayesian framework, MacKay [8]

attempts to measure the information that can be gained about the unknown target hypothesis

using new labeled data. An explicit method requires a closed form calculation on the learner’s

variance on the target hypothesis, which is only available for simple learning schemes, such

as locally weighted regression [9], or based on various approximations which may undermine

the precision of this method [8]. The alternative is to measure the informativeness implicitly

by computing the model’s variance on classifying the data considered. The query by committee

(QBC) method [7], [17]–[19] falls in the framework of theimplicit measure. In this method

the classification variance is estimated by computing the classification uncertainty with respect

to the entire space of possible models consistent with the training data. The three algorithms

we present in this paper are QBC, the maximum expected information gain method (MEIG)

and an error-reduction-based method. We show that with the posterior density of the model

parameters obtained via VB, both the implicit measure and explicit measure of informativeness

can be calculated efficiently. New aspects of this work include consideration of sequential data,

modeled via an HMM. Further, the variational form of HMM training plays a key role in

implementing the active-learning algorithms.

A. Query By Committee

The QBC algorithm is formulated and analyzed in [17], [18]. This algorithm is based on a

theoretical result stating that by halving the version space after each query, the generalization

error decreases exponentially. The version space is a subset of hypotheses that is consistent with

the labeled training data. In a binary case, this method randomly samples the version space and

induces an even number of classifiers (committee). The label of an unlabeled data is requested

whenever a voting between the classifiers on the unlabeled data results in a tie. This algorithm,

originally designed for the binary case, has been extended to the probabilistic model in [7], [19],

which inspires the VB implementation of the QBC presented here.



14

In the framework of QBC, the informativeness of an example is measured by computing the

classification variance with respect to the entire space of possible models consistent with the

training data thus far. However, estimation with respect to the entire model space requires vast

computation resource. Thus, the QBC algorithm approximates the entire space by randomly

sampling the model-parameter distribution that resulted from the training data. These randomly

selected models serve as a “committee” of classifiers to classify each unlabeled example. The

classification variance is measured by computing the disagreement over their classifications. The

data with the strongest disagreement among the committee are selected for labeling. In [7], the

degree of disagreement is measured via the KL divergence, measuring the average distance of

the class posterior density resulting from each committee member to the their mean value.

An obvious method to generate the committee members is by exploiting the local-maxima

property of the conventional HMM EM training algorithm [12]. That is, by starting the EM

algorithm with different initial guesses, ML estimation can converge to an ensemble of different

local maximas, forming a committee. However, this method has several disadvantages. First, it

needs to learn the model multiple times to form the committee. Second, some ML estimations

may converge to the same or similar local maximum, undermining committee diversity. However,

with the posterior density of the model parameters obtained via the VB, this problem can be

solved simply by random sampling from the posterior density of the model parameters obtained

from VB learning (discussed in Sec. II).

Let x∗ be an unlabeled data sequence whose informativeness we want to evaluate, with its

unknown class labely∗ ∈ {1, · · · , C}. With VB learning, the posterior density of all model

parametersλ = {Φ1, · · · , ΦC} can be induced from the labeled dataDl = {D1
l , · · · , DC

l },
where λ consists of model parameters of each class,∀i ∈ {1, · · · , C}, Di

l → Φi. In other

words,p(λ|Dl) represents the posterior probability ofλ given the training dataDl. We can then

randomly samplep(λ|Dl) M times to generate a committee of classifiers withM members:

λ̂1, · · · , λ̂M . The degree of disagreement with regard to an unlabeled datax∗ can be evaluated

by the KL divergence [7],

score(x∗) =
1

M

M∑
m=1

KL
(
p(y∗|x∗, λ̂m)||pavg(y

∗|x∗)
)

(54)

where p(y∗|x∗, λ̂m) is the class posterior of unlabeled datax∗ with regard to themth com-

mittee member, andpavg(y
∗|x∗) = 1

M

∑M
m−1 p(y∗|x∗, λ̂m). By Bayes’ rule,p(y∗|x∗, λ̂m) can be
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calculated as:

p(y∗|x∗, λ̂m) =
p(x∗|λ̂y∗

m )p(y∗)
∑C

y∗=1 p(x∗|λ̂y∗

m )p(y∗)
(55)

wherep(x∗|λ̂y∗

m ) can be calculated via the forward-backward algorithm [12], andp(y∗) is the

class prior, which can be estimated directly from the labeled data (or we can just assume a

non-informative prior).

B. Maximum Expected Information Gain (MEIG)

Within a Bayesian framework, MacKay [8] attempts to measure the information that can be

gained about the unknown target hypothesis using a new labeled data. Thus, the informativeness

of a new labeled data can be accessed analytically. In pool-based active learning, we may view

this active learning setting as an information extraction process: we select the data that gives

us maximum information about the pool. As we only select one most-informative data each

time, the maximum expected information gain (MEIG) approach becomes a greedy (myopic)

algorithm.

Let x∗ be an unlabeled data sequence, its class labely∗ ∈ {1, · · · , C}. With VB learning

the posterior density of all parametersλ = {Φ1, · · · , ΦC} is estimated from the labeled data

Dl = {D1
l , · · · , DC

l }, whereλ consists of model parameters of each class,∀i ∈ {1, · · · , C},
Di

l → Φi. In other words,p(λ|Dl) dictates the posterior probability ofλ given the training

dataDl. Then, information gain after augmenting an unlabeled data into the training set can be

expressed in the context of information theory: how much information aboutλ can be obtained

if we add an unlabeled data into the training set? Since the class labely∗ of x∗ is unknown,

it is treated as a random variable whose probability can be estimated from the training data.

The information gain of an unlabeled data can be expressed as the mutual information (MI)

between the random variableλ and y∗, and consequently we call this method the maximum

mutual information (MMI).

G(x∗) = I(λ; y∗) = H(λ|Dl)−
C∑

y=1

H(λ|Dl, x
∗, y∗)p(y∗|x∗, Dl)

=
C∑

y∗=1

[
H(Θy∗ |Dy∗

l )−H(Θy∗|Dy∗
l ,x∗, y∗)

]
p(y∗|x∗, Dl) (56)
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wherep(y∗|x∗, Dl) is the class posterior ofx∗ given the training dataDl, and the expression

representsH(·) Shannon entropy [20]. By Bayes’ rule,

p(y∗|x∗, Dl) =
p(x∗|Dy∗

l )p(y∗)∑C
y∗=1 p(x∗|Dy∗

l )p(y∗)
(57)

wherep(x∗|, Dy∗
l ) is the predictive probability ofx∗ given the training dataDy∗

l , which can be

calculated from (52), andp(y∗) is the class prior that can be estimated directly from the labeled

data (or we can just assume a non-informative prior).

In addition to the mutual information, another information measure we consider is the KL

divergence between the posterior density of model parameterλ obtained after augmenting an

unlabeled data into the training set and before the augmentation:

G′(x∗) =
C∑

y∗=1

KL
[
p(Φy∗|Dy∗

l ,x∗, y∗)||p(Φy∗ |Dy∗
l )

]
p(y∗|x∗, Dl) (58)

When we use the KL divergence as the measure of information gain, we call this method

the maximum KL divergence (MKL). The MI measure only seeks the labels to most shrink

the model variance while the KL measure seeks labels that can most shrink or expand (i.e.,

change) the model variance. Thus, the information gain of the KL measure is defined in terms

of the possible change in the model variance, which may be more appropriate for active learning;

since the previous estimation of the model may be biased, only minimizing the variance is not

correct. In Sec. IV we validate this idea using synthetic and measured data. The equations for the

entropy and KL divergence of Dirichlet and Normal-Wishart distributions can be obtained from

the Appendix. We note that this active-learning methodology attempts to reduce uncertainty on

the model parameters, which does not necessarily translate to classification performance.

C. Error-Reduction-Based Active Learning

The ultimate goal of active learning is to achieve the lowest expected error on future test data,

with the fewest possible labeling queries. Toward this criterion, the active learner should select

the data sample that once incorporated into training will result in the lowest expected error on

the set of testing samples. The method follows the general bias and variance decomposition of

prediction error [9], [21].

Let p(x, y) be the unknown joint distribution over inputx and labely, and p(x) be the

(known, at least approximately) input distribution ofx. The goal of the learner is to estimate
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p(y|x) from a labeled training setDl = {(x1, y1), · · · ,xl, yl)}, yi ∈ [1, · · · , C]. We denote the

learner’s prediction on an unlabeled datax given training setDl as ŷ(x; Dl), which is a random

variable due to the randomness ofy dictated byp(y|x) and randomness of learning algorithm

on Dl dictated byp(ŷ|x, Dl). By usingp(y|x) we are allowing possible label noise in the data.

The error of the learner over the input distribution can be expressed as

Error =

∫
ET [ŷ(x; Dl)− y(x)]2 p(x)dx (59)

whereET [·] denotes expectation overp(y|x) and overp(ŷ|x, Dl). The expectation inside the

integration may be decomposed as [9], [21]

ET [ŷ(x; Dl)− y(x)]2 = E[y(x)− E(y|x)]2 + [EDl
(ŷ(x; Dl))− E(y|x)]2

+ EDl
[ŷ(x; Dl)− EDl

(ŷ(x; Dl))]
2 (60)

The first term in (62) is the noise in the distribution, which does not depend on the learner

or on the training data, and represents the minimal error of an ideal learner can achieve. The

second term is the learner’s squared bias, and the third is the learner’s variance; these last two

terms comprise the mean squared error of the learner. If we assume that the data set is noiseless

and the learner is unbiased, then the first and second terms in (62) vanish and the error only

depends on the learner’s variance,

Error ≈
∫

EDl
[ŷ(x; Dl)− EDl

(ŷ(x; Dl))]
2 p(x)dx (61)

This equation motivates the use of a new function

Error ≈
∫

H(ŷ|x, Dl)p(x)dx (62)

whereH(ŷ|x, Dl) is the uncertainty (entropy) in the classifier given labeled dataDl and sample

x. We then obtain a similar expression as in [15] if the entropy is substituted by the log loss

function. However, we should point out a significant difference between them: in [15]p(ŷ|x, Dl)

is approximated by the prediction of a single classifier induced fromDl, while in a rigorous

sense, this quantity should be an averaged value onDl which may be calculated by averaging all

the predictions of an ensemble of classifiers induced fromDl. In the framework of VB learning,

this quantity can be calculated by (59), i.e., the VB algorithm yields an ensemble of classifiers

ŷ(x; Dl), allowing computation of the entropyH(ŷ|x, Dl).
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To actively select the data, we may need to calculate theexpectederror of the learner after

adding an unlabeled datax2 into Dl, and select the one that has the minimal expected error to

query the label:

E(x∗) =

∫ C∑
y∗=1

H(ŷ|x, Dl,x
∗, y∗)p(y∗|x∗, Dl)p(x)dx (63)

The expectation is over the predicted labely∗ since the true label of the unlabeled data is

unknown.

D. Interpretation and Connections

The error-reduction-based active learning selects the unlabeled data that has the minimal

expected error for querying (defined in terms of the expected entropy in the classifier output

ŷ(x; Dl)). This is equivalent to choosing the unlabeled data that gives the maximum information

about the labels of the testing set. Expressed in terms of information theory, the information

gain is the mutual information between all the predicted labelsŶ of the testing data and the

predicted labely∗ of unlabeled datax∗:

I(Ŷ ; y∗) =

∫ (
H(ŷ|x, Dl)−

C∑
y∗=1

H(ŷ|x, Dl,x
∗, y∗)p(y∗|x∗, Dl)

)
· p(x)dx

=

∫
I(ŷ|x; y∗|x∗) · p(x)dx (64)

Similar to the KL-based measure discussed above, we can also evaluate the information gain

by using the KL divergence instead of using the mutual information. This is expressed as

I ′(Ŷ ; y∗) =

∫ (
C∑

y∗=1

KL(p(ŷ|x, Dl, x
∗, y∗)||p(ŷ|x, Dl)) · p(y∗|x∗, Dl)

)
· p(x)dx (65)

Now consider the active learning procedure. First, we select an unlabeled datax∗ and acquire

its label y∗; then, (x∗, y∗) is added intoDl to induce the refined model parameterλ of the

classifier; finally, this model is applied to predict the class labelsŶ of all the testing data.

This procedure forms a first order Markov chain withy∗ → λ → Ŷ . By the Data Processing

Inequality [20], we observe that

I(λ; y∗) ≥ I(Ŷ ; y∗) (66)

This inequality shows thatI(λ; y∗) is an upper bound onI(Ŷ ; y∗), and maximizingI(λ; y∗)

doesn’t necessarily increaseI(Ŷ ; y∗). Thus, toward the criterion of minimizing the expected error
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on the test data, the MEIG, which maximizesI(λ; y∗), is less desirable compared with active

learning that directly maximizesI(Ŷ ; y∗). However, as we can see from the implementation of

these two algorithms, computation ofI(Ŷ ; y∗) may be intractable since it requires re-training

the classifier for each unlabeled data once, and for each unlabeled data it requires to re-test on

all the remaining unlabeled data. While the MEIG algorithm only requires re-training on each

unlabeled data once, the estimation of the prediction error is alternatively replaced by calculating

the variance of the model parameters. After practical implementation, we notice that even for

the MEIG, its computational burden may be still high. In this case, the QBC algorithm appears

as a simplified algorithm that measures the informativeness of an unlabeled data by calculating

its classification variance among a set of classifiers. Neither re-training nor re-testing is required

in the QBC.

IV. EXPERIMENTAL RESULTS

We demonstrate the VB HMM and its extension to active learning, considering synthetic

and measured data. For the synthetic data, the number of classes isC = 5 and the data of

each class are generated by a 3-state HMM, with each state-dependent observation density

generated by two-dimensional single Gaussian distribution. A set of sequential data are generated

per class, with the sequence length of each data . This data set can be found at web site

http://www.ee.duke.edu/ ∼lcarin/synthetic data.zip .

For the first experiment, we compare the classification performances of the ML and VB HMMs.

We randomly selectNl = 5 data sequences per class as the initial labeled data set. We then

sequentially select a random data sequence from the unlabeled data, acquire the associated label,

and then augment the labeled data. After each augment of the training data, the ML and VB

algorithms are used to retrain the HMMs, and the testing is applied on the remaining unlabeled

data. In this manner we compare ML and VB training as a function of the size of the labeled data

set. The average correct classification rates are calculated by averaging the correct classification

rates of the five classes. The experiment is repeated 50 times and the averaged results and the

standard deviations are shown in Figure 1. The results show that the VB consistently outperforms

the ML, especially for small sets of labeled data. With the initial training set(Nl = 5), the ML

learning apparently overfits to the data and the classification performance is rather poor, while the

VB obtains greater than15% improvement. As the training data set increases, the classification
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Fig. 1. Comparison of VB and ML learning. The horizontal axis indicates the number of additional (randomly selected) labeled

data added to the training set. The mean (lines) results are presented as well as a standard deviation (error bars), based on 50

runs of the random data selection.

results of both methods become closer. This is not surprising since as the size of training data

increases, the posterior density of model parameters becomes more sharply peaked around the

ML estimate. As a detail of the experiment implementation, the parameters of VB learning are

initialized by the ML point estimation. First, the ML learning is run to convergence, and then

the VB learning runs from that point in parameter space to convergence. In Figure 2, an example

learning curve of the VB is presented.

In the second experiment, we compare the classification performance of the active learning

algorithms. Three active learning methods are considered in the experiment: the QBC with

KL divergence (Sec. III.1), the MKL/MMI (Sec. III.2) and the error-reduction-based active

learning (Sec. III.3). In addition, random selection of data for labeling is also included for

comparison. We randomly selectNl = 5 data sequences per class as the initial training data

set and incrementally actively select the other 100 data sequences sequentially (as in Figure

1, but now the additional labeled data are selected actively). The results on active learning are

shown in Figure 3 in which some curves are the average of the multiple realizations to address

the randomness of the algorithms. For example, the “random selection” results are averaged

over 50 trials; “QBC (KL)” results are averaged over 20 trials. The other curves are based on

one realization. For the purpose of comparison, one standard deviation of the “QBC (KL)” is
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Fig. 2. An example learning curve of the VB algorithm, for the results in Figure 1. The parameters of VB learning are

initialized by the ML point estimation.

also shown. All active-learning methods consistently outperform random selection. To achieve

the same correct classification rate, the active learning methods need much less labeled data

compared to the random selection. The MMI outperforms the QBC at the initial part of the

learning process (early queries), but underperforms the QBC at the later stages. This may be

because the MMI seeks the data sequence to shrink the model posterior, but discards the data

sequences that may expand the model posterior. However, this effect has been considered by

the MKL for the non-negative information measure of the KL divergence. We notice that the

classification performance of the MKL indeed outperforms that of the MMI. This may suggest

that the KL divergence is more appropriate for active learning compared to the MI measure.

Moreover, the MKL approaches the upper bound of one standard deviation of the QBC (KL).

Another notable comparison of the MKL to the error-reduction-based active learning is also

shown in the figure. Both of their classification performances are very similar. This may suggest

that without the model bias, maximizingI(λ; y∗) is similar to maximizingI(Ŷ ; y∗). In Figure

4, the maximum expected information gain of each query is plotted. The information extracted

at each query generally decreases exponentially. This characteristic may be useful to design the

stopping criterion. As the expected information gain approaches zero, we may stop the active

learning and declare that all the information in the data set has been absorbed; no additional
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Fig. 3. Comparison of active learning on synthetic data. The horizontal axis indicates the number of actively selected labeled

data added to the training set. The averaged results of the QBC are presented as well as a standard deviation (error bars), based

on 20 runs of the QBC. The averaged results of the random selection via the VB are also presented for comparison.

data sequences are deemed informative for subsequent labeling.

As the final experiment, we apply the active-learning algorithms to measured acoustic-scattering

data. In particular, we apply the HMMs to multi-aspect target classification. For the general

theory on multi-aspect target classification with HMMs, and a description of the data and targets,

interested readers should see [22]. The targets are five rotationally symmetric underwater scatters,

and therefore the scattering data is collected over360◦ in a plane bisecting the target axis of

rotation. The data are sampled in1◦ increments, in the far zone of the target (at radial distance

large with respect to the target). The features of the data are extracted using matching pursuits

[22] with feature-vector dimensionality 8. We generate the data sequence by sampling the target

every5◦ with sequence length 5. The active data selection starts after we assume access to five

labeled data sequences for each target. Therefore, we have5 × 5 data sequences as the initial

training data set and355 × 5unlabeled data sequence to which the active learning algorithms

are applied. We assume a 5-state continuous HMM with each observation density generated by

a mixture of two Gaussians. The results in Figure 5 are similar to that of the synthetic data,

except that in this real data, the MMI outperforms the MKL. This may due to the bias of the

model, since the model we selected to fit the real data may deviate from the true model. Again,

the error-reduction-based active learning approaches the one-standard deviation upper bound of
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Fig. 4. The maximum expected information gain of every data query, computed for MKL (corresponding to the MKL results

shown in Figure 3). The horizontal axis indicates the number of actively selected labeled data added to the training set, and the

vertical axis shows the maximum information that can be extracted by each query.

the QBC. The MMI is close to the error-based active learning at the first half of the learning

process (early queries), but deteriorates subsequently (when later samples are queried).

V. CONCLUSION

We have presented avariational Bayes(VB) learning algorithm for continuous HMMs, and

demonstrate that the VB has the advantage of not overfitting small sets of labeled data, which

often happens in vmaximum likelihood(ML) learning. More significantly, with the posterior

density of the model parameters approximated via the VB, the problem of active learning can be

solved in an effective manner. The query by committee (QBC) algorithm can be implemented by

directly sampling the posterior density of model parameters, to form a committee of classifiers,

while previously QBC typically required multiple ML re-trainings to form the committee. The

maximum expected information gain (MMI/MKL) algorithm has not been applied previously to

HMMs, and has been facilitated here by minimizing the posterior density of model parameters

obtained by the VB. Finally, active learning based on reducing expected classification error has

been implemented in a rigorous sense via VB learning. We have also interpreted the relationships

among these three algorithms in an information-theoretic context. The experiments on synthetic

and measured data demonstrate the significant improvement of the active learning compared
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Fig. 5. Comparison of active learning on measured data. The horizontal axis indicates the number of actively selected labeled

data added to the training set. The averaged results of the QBC are presented as well as a standard deviation (error bars), based

on 20 runs of the QBC. The averaged results of the random selection are also presented for comparison.

to random selection of labeled data. Moreover, the MMI/MKL outperforms the QBC, and the

MKL approaches one standard deviation of the upper bound of the QBC. Overall, the results

of the error-reduction-based active learning were the best considered. However, the computation

requirements of this approach may be infeasible compared to that of the MMI/MKL, which

can be computed with much less computational resources and yield results of only slightly less

quality. The future research on the active learning may focus on fast implementation of the

error-reduction-based active learning, and in approximating it by the MMI/MKL with a tighter

bound as expressed in (68).

APPENDIX

1. Dirichlet distribution

Dir(p1, · · · , pN |u1, · · · , uN) =
Γ(u0)∏N
i=1 Γ(ui)

N∏
i=1

pui−1
i (67)

where
∑N

i=1 pi = 1, ui ≥ 0, andu0 =
∑N

i=1 ui is the strength of the Dirichlet distribution.

1.1 KL divergence of Dirichlet distribution
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For two Dirichlet distributionsq(p1, · · · , pN) = Dir(p1, · · · , pN |u1, · · · , uN) andp(p1, · · · , pN) =

Dir(p1, · · · , pN |u′1, · · · , u′N),

KLDir(q||p) = log
Γ(u0)

Γ(u′0)
+

N∑
i=1

log
Γ(u′i)
Γ(ui)

+
N∑

i=1

(ui − u′i)(ψ(ui)− ψ(u0)) (68)

2. Wishart distribution

p(R|a, b) =
1

Z(a, b)
|R|(a−d−1)/2 exp

(
−1

2
Tr(bR)

)
(69)

where

Z(a, b) = πd(d−1)/4|b/2|−a/2

d∏
i=1

Γ

(
a + 1− i

2

)
(70)

2.1 Moments of Wishart distribution

E(R) = ab−1 (71)

E(log |R|) = − log |b/2|+
d∑

i=1

ψ

(
a + 1− i

2

)
(72)

2.2 KL divergence of Wishart distribution

For two Wishart distributionsq(R|a, b) andp(R|a′, b′)

KLwishart(q||p) =
a− a′

2
E(log |R|)− ad

2
+

a

2
Tr(b′b−1) + log

Z(a′, b′)
Z(a, b)

(73)

3. Normal-Wishart distribution

p(µ, R|a, b, λ,m) = W(R|a, b) · N (µ|m, λR)

=
1

Z(a, b)

(
λ

2π

)d/2

|R|(a−d)/2 exp

(
−λ

2
(µ−m)T R(µ−m)

)

× exp

(
−1

2
Tr(bR)

)
(74)

whereW(R|a, b) is the Wishart distribution with the degree of freedoma and the covariance

matrix b; N (µ|m, λR) is the Normal distribution with the mean vectorm and the precision

matrix λR.
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3.1 Moments of Normal-Wishart distribution

E
(
(xt − µ)T R(xt − µ)

)
= a(xt −m)T b−1(xt −m) + d/λ (75)

3.2 KL divergence of Normal-Wishart distribution

For two normal-wishart distributionsq(µ,R|a, b, λ,m) andp(µ,R|a′, b′,λ′,m′)

KLNW (q||p) =

∫
q(µ,R) log

q(µ,R)

p(µ, R)
dµdR

=

∫
q(R|a, b) log

q(R|a, b)

p(R|a′, b′)dR +

∫
q(R|a, b)q(µ|m, λR) log

q(µ|m, λR)

p(µ|m′,λ′R)
dµdR

= KLwishart(q||p) +
1

2
(d log

λ

λ′
+ d

λ′

λ
− d + λ′(m−m′)T ab−1(m−m′)) (76)

3.3 Entropy of Normal-Wishart distribution

H = −
∫

p(µ,R) log p(µ,R)dµdR

= log Z(a, b)− d

2
log

λ

2π
− a− d

2
E(log |R|) +

λ

2
E

(
(µ−m)T R(µ−m)

)
+

1

2
Tr(bE(R))

=
d(d + 1)

4
log 4π +

d

2
(a + 1) +

d∑
i=1

log Γ

(
a + 1− i

2

)
− d

2
log λ− d

2
log |b|

− a− d

2

d∑
i=1

ψ

(
a + 1− i

2

)
(77)
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