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Abstract

In this paper we presentariational BayegVB) framework for learning continuous hidden Markov
models (CHMMs), and we examine the VB framework within active learning. Unlike a maximum
likelihood or maximuma posterioritraining procedure, which yield a point estimate of the CHMM
parameters, VB-based training yields an estimate of the full posterior of the model parameters. This is
particularly important for small training sets, since it gives a measure of confidence in the accuracy of
the learned model. This is utilized within the context of active learning, for which we acquire labels
for those feature vectors for which knowledge of the associated label would be most informative for
reducing model-parameter uncertainty. Three active learning algorithms are considered in this paper: (i)
query by committee (QBC), with the goal of selecting data for labeling that minimize the classification
variance; (ii) a maximum expected information gain method that seeks to label data with the goal of
reducing the entropy of the model parameters; (iii) an error-reduction-based procedure that attempts to
minimize classification error over the test data. The experimental results are presented for synthetic and
measured data. We demonstrate that all of these active learning methods can significantly reduce the

amount of required labeling, compared to random selection of samples for labeling.
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. INTRODUCTION

There has recently been an increasing interest in the area of variational Bayes (VB) learning
[1]-[6]. Compared to standard maximum likelihood (ML) or maximwmposteriori (MAP)
learning, VB does not yield a single point estimate of the model parameters. Rather, an ensemble
of models are learned, with the goal of estimating the posterior density function on the model
parameters, given a prescribed set of training data. This framework has often proven to be less
sensitive to overfitting, and since the full posterior of the model parameters is available, it is
well suited for active learning.

After the VB algorithm is trained, testing (classification) is performed by integrating out, in
a Bayesian sense, the model parameters. Consequently, classification is not performed based
on a single (point) estimate of parameters, but on a weighted sum over the ensemble. In many
applications this framework has been found to be less sensitive to overfitisrgyvisa ML/IMAP
training procedure. The VB procedure is a practical implementation of Bayesian learning for
the true posterior probabilities of model parameters. Instead of computing the true posterior
probabilities of the model directly, the VB approximates the true posterior to a variational one
by maximizing a negative free energy. The resulting algorithm is closely related to the EM
algorithm, and each iteration guarantees to monotonically increase the negative free energy or
leave it unchanged, until converges is achieved at a local maximum. MacKay presents in [4]
VB learning for a discrete hidden Markov model (HMM). We here present VB learning for a
continuous HMM. Besides providing a new learning algorithm, we focus on active learning for
HMMs, exploiting the VB machinery. We demonstrate that with the posterior probability of the
model parameters estimated via VB, active learning can be solved in a convenient manner. Two
previous active-learning criterions, minimizing the classification variance and minimizing the
model’s variance, can be implemented easily, while previously they were either computationally
inefficient or intractable for continuous HMMs (CHMMSs) [7]-[9].

The remainder of the paper is organized as follows. In Sec. Il we present variational Bayes
learning of continuous HMMs. The application of variational Bayes to active learning is il-
lustrated in Sec. lll, by extending the query by committee (QBC) and the maximum expected
information gain (MEIG) active learning algorithms. We also consider an active-learning algo-

rithm based on minimizing classification error. The relationship among these three active-learning



algorithms is also addressed in detail. In Sec. IV we present experimental results on synthetic

and measured data. The conclusions and future work are addressed in Sec. V.

II. VARIATIONAL BAYES LEARNING OF CONTINUOUS HIDDEN MARKOV MODELS

Parameter estimation is a fundamental problem in system identification, pattern classification,
and signal processing. We assume a (typically small) set of data is available from the system of
interest. The objective is to fit a model to the data, to best describe the system. There are two
broad treatments of this problem: 1) The model parameters are treated as fixed but unknown, and
2) the model parameters are treated as random variables [10]. The former treatment results in
maximum likelihood (ML) or maximuna posteriori(MAP) estimation. In a Bayesian analysis,
of interest for (2), before observing any data one assigns a prior distribution over the model
parameters; after observing the data, Bayes’ rule is used to infer their posterior distributions. In
this way, themarginal likelihoodor “evidencé can be obtained by integrating out the model

parameters:
p(x) = / (| B)p(®)dP 1)

where x represents the observed data abddenotes the model parameters. Timarginal
likelihood or “evidence& does not fit any single model to the data, but regards all model
parameters as possible with different probabilities, definedpyi®). However, the Bayesian
integration is typically computationally intractable, even in very simple cases. Most existing
methods, such as Markov Chain Monte Carlo (MCMC) [11] and the Laplace approximation [6]
either require vast computational resources to get accurate results or crudely approximate all the
posteriors via a normal distribution. Between these two extremes, the VB method attempts to
approximate the integration as accurately as possible while remaining computationally tractable
[6].

We are interested in estimating the parameters of a continuous hidden Markov model (CHMM),
in which a Gaussian mixture model is used for the state-dependent density function. A traditional
method for estimating the parameters of a CHMM employs an ML estimation based on the
expectation-maximization (EM) algorithm [12], [13]. In the EM algorithm the unobserved state
sequence is treated as hidden. The algorithm starts from an initial guess of the model parameters,

and iteratively updates them via the E and M steps. In the E step, the model parameters are fixed



and the probability of the hidden variables are estimated based on the current model. In the M
step, the probability of the hidden variables resulting from the E step is fixed and the model
parameters are updated by maximizing the expected complete-data likelihood over the hidden
variables. It is proved in [13] that the EM algorithm is guaranteed to increase the likelihood
or leave it unchanged until converges to a local maximum. In Neal and Hinton’s paper [1],
the EM algorithm is interpreted from a variational perspective. The M step remains unchanged.
However, the E step is replaced by optimizing a variational posterior over the hidden variables,
to maximize the “free energy”. Similarly, in the Bayesian learning framework, since the model
parameters are also treated as random or hidden variables, the varitional approximation can be
employed on both the hidden variables and model parameters. From this perspective, variational
Bayes is also an iterative technique that is similar to the EM algorithm and whose convergence
is guaranteed. In the following, we derive the variational Bayes implementation of the CHMM,
in a manner similar to MacKay [4], who considered a discrete hidden Markov model (DHMM).
Consider anN-state HMM, with the state-dependent observation defined by a Gaussian
mixture. For notational convenience, it is assumed that all states have the same number of
mixture componentsk’, and the dimensionality of the feature vectors/isThen an HMM can
be modeled a® = {7V, ANXN CNxK @NxK1 "wherer is the initial-state probability vector,
A is the transition matrix(C' is the mixture-coefficient matrix, ané is the parameter matrix
composed of the Gaussian parametefs= { /., R} for the kth mixture component of théh
state, with meanu;, and precision matrix?;;, which is the inverse of the covariance matrix.
For an observation sequencé = (x,zo,---,2r), the associated complete-datalis =
(X,S,L), whereS = (s1,s9,---,s7) is the unobserved state sequence, and (I;,ls, - ,lr)
is the indicator sequence, which indicates which mixture component generates the observation.
Thus,s; € [1, N] andl; € [1, K]. For given model parameteds the probability of the complete

data can be expressed as

(X SL‘(I) Ha5t5t+l Hcstlt 'Tt‘estlt (2)

and the likelihood of the model paramet@rgyiven the dataX is

T-1

T
X|(I) Zﬂ—sl ' H QAsisipr * H Cstltf(xtwszlt) (3)
t=1

t=1



By Bayes’ rule, the posterior density for the model parameters can be expressed as

(x| e)(®)
PPIX) = (K] 0)p(@)dd )

where in the denominator of (4) we must integrate (sum) over all parameters, covering the

complete range of each parameter. The computational cost required for the denominator is what
has motivated previous ML/MAP solutions (which simply maximize the numerator in (4)). The
VB algorithm represents an approximate and computationally tractable means of computing
(4), and approximates this integration by maximizing a lower bound [1], [6], which can be
derived from a fundamental relationship between the log-likelihood, negative free energy and

the Kullback-Leibler (KL) divergence. The marginal likelihood can be expressed as

p(X, S, L, ®)
p(X) = (S, L, 5| X)

In this case, both the hidden variables and model parameters are all treated as random variables.

(5)

Taking the logarithm and then the expectation with respect to the distribwtii., ®) on both

sides, we obtain

log p(X) = / 4(S, L, ) log p(X, S, L, B)dSdLdD — / o(S, L, ®) log p(S, L, ®|X)dSdLdD
(6)
where the distributior(S, L, ®) is called the approximate or variational posterior of the model

parameters and hidden variables. By re-arranging (6), we obtain

log p(X) = F(q) + K L(qlp) (7)
where
B p(X, S, L, P)
B q(S, L, ®)

The term F'(q) is known as the negative free energy used in statistical physicskand||p)
is the Kullback-Leibler (KL) divergence between the approximate and true posterior. Since the
KL divergence is non-negative and is zero for identical distributions, this indicateg thatis
a strict lower bound othog p(X),
logp(X) > F(q) (10)



with equality if the approximate posterior density equals the true posterior density,.$.el, ®) =
p(S, L, ®|X). The aim of VB is to maximize this lower bound by tuning the variational posterior
q(S, L, ®) such that as the variational posterior approaches the true posterior, the bound becomes
tight, thus the marginal likelihood can be approximated efficiently.

For the computation of the negative free energy, two key issues remain to be addressed: the
choice of the form of the variational density and the prior distribution of model parameters. We
need to choose a density form that is tractable and meanwhile can make a good approximation

to the true posterior. One choice is a factorized form
q(S, L, ®) = q(S)q(L)q(m)q(A)q(C)q(O) (11)

which has been successfully applied in many applications of the variational method [2], [4], [5].
A natural choice for the prior over, the rows ofA and the rows o€ is the Dirichlet distribution,
since the Dirichlet distribution is the conjugate prior over the multinomial distribution [4].
Similarly, we choose the Normal-Wishart distribution as the prior over the Gaussian distribution

[6], [14]. Thus, the prior on the model parameters can be expressed as

p(®) = p(m)p(A)p(C)p(O) (12)
where
p(ﬂ') - Dir(ﬂ-lﬂ'” 77TN|U71FJ"' 7uTrN) (13)
N
p(A) = []Dir(an, - aivlui, - ull) (14)
=1
N
p(C) = [[Dir(ca,--  cixluf, - ui) (15)
=1
N K
p(®) = H H NW (pir, Riklair, bik, Aik, mix) (16)
=1 k=1

The form of the Dirichlet distribution and the Normal-Wishart distribution are discussed in the
Appendix.
M Step: With the variational posterior on hidden variables fixed @tS, L), update the

variational posterior on model parametegg®) to maximizeF'(q).



We can substitute (2) and (11)-(16) into (8) to yield

F(g) = / ()M A Cha(®)og s, + 3 108ty + 3 log

T
+ Y log f(w]0sy,) + log p(w) + log p(A) + log p(C) + log p(©)
t=1

- lt;g q(S) —logq(L) — log q(m) — log q(A) — log ¢(C) — log ¢(®)]dSdLdP
= F(q(m)) + F(q(A)) + F(q(C)) + F(q(®)) + H(q(S, L)) (17)

In the equation above, the last term is constant sifice L) is fixed for the M step and is
ignored in the subsequent optimization steps. The independence among the functiof(s pver
q(A), andq(P) enables us to optimize them separately.

1. Optimization of ¢(A), ¢(w) and ¢(C)

By collecting all the quantities related to together, we obtain the expression

F(g(A)) = / 2D S 4(S) S log gy dA+ / 4(A) log p(A)dA — / 1(A) logg(A)dA (18)

S
Further, we define a quantity

wfj :ZQ(S)5(St=i,St+1 =J) =q(st =1, 111 = J) (19)
S

which is similar to the quantity, (7, j) defined in [12] for the probability of being in staieat

time ¢, and statej at timet 4+ 1. Then, we have

q(A
F(q(A)) = - / g(A)log (%) dA (20)
ij=1 Yij
where -
Wi =" wl +u (21)
t=1

By Gibbs inequality,F'(¢(A)) is maximized with respect tg(A) by
N
Q(A) = HDir(ailf” 7aiN|Wz‘?"" 7Wz§‘V) (22)
=1

which is a product of Dirichlet distributions with the hyperparameté’gﬁ.



Similarly, we can optimizeF'(q) with respect tog(w), ¢(C) separately by using a similar

procedure and obtain the optimizetr), ¢(C) expressed as

q(m) = Dir(my, -, an|W, -, WR) (23)
q(C) = ﬂD"(Cih"' cax|Wi, - Wig) (24)
where
Wi = wi+uf (25)
Wi = wak + uf (26)
wy = Zq O(s1 = 1) = q(s1 = 1) (27)
Wi = ZQ(S)Q(L)5(3t =il =k)=q(s; =i,l; = k) (28)
S,L

For the similar definitions to the conventional EM training, the quantiigsw;; andwj, can
all be calculated using the forward-backward algorithm [12].

2. Optimization of ¢(®)

By collecting all the quantities related tg®) together, we obtain the expression

F(a(©) = [ a(®) S a(S)alL) 3 log f(ailos )0+ [ a(@)logp(©)de- [ a(@) og g(©)de
S,L t=1

(29)
With w!, defined in (28), we obtain

- ) q(©)
F(q(©)) = /Q(9)1 g (Hﬁl T T, £ (0)0) x p(9ik)> "

(30)

The optimizedq(6,;,) becomes

T
q(0ix) = Hf i (4|03k) X p(Oik) H (| ik, Rin) X ik, Rire|@in, bige, Aire, mige)

=1
1k:+w1k d

( ik/27r)d/2 ’ |
Z(aik, bzk:) X (27T)dw““/2 ik

i
exp |:—7k(,uik — miy )" Rig(pir — m;k):|

X exp {—%Tr(b;kRik)} (31)



where

T
Wi = wak (32)

t=1

T
Tip = wakﬁt/wik (33)
Sik = Z U) — ZElk ZEt — fik)T (34)
Qe = ik + Wik (35)

ik Wik _ _

Vy, = b+ S+ ———(mu — i — Tig) " 36
ik ket k+)\ik+wik(mk Tir) (M — Tik) (36)
)‘;k = A\ix + Wik (37)
m = NikMil + Wik T ik (38)

Ak + Wi
E Step With the variational posterior on model paramete(®) fixed, update the variational
posterior on hidden variableg(S, L) to maximizeF'(q).
By substituting (2) and (11)-(16) into (8), and re-arranging, the negative free energy function
can be expressed as:

F(q) = F(q(S, L)) — KL(q(®)||p(®)) (39)

where

T-1
Zq / ) log g, dm + Z /q(A) Zlog Uspspy AA
t=1

S

T
=S [ a(©) S logcandC + 3 4(5.1) [ a(©)Y 1og fmlouide
S,L t=1 S,L t=1
— > q(S,L)logq(S, L) (40)
S,L

Sinceq(®) is fixed, the second term in (39) is constant. We only need to optimize the first term.
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We start by defining

logr?, = / a(m) log 7y dr = (VT ) — p(WE) (41)
108y, = [ 2(A) 108 004 = V(W) ~ (W) “2)
logct, = / 4(0) log o dC = (WS, ) — H(WE,) (43)
log f*(21/0s) = / 4(©) log f(z|0,)dO

d .

. d 1 bStlt 1 Ag,l, +1—2

= 210g27r 2log| 5 |—|—2;¢( 5 )

1 . d

- §astlt ('rt - mszlt> bstlt (xt - mszlt> - 2\ l (44)

where ¢ (-) is the digamma function defined agz) = 2 logI'(z); W7, W2, and WS, are
strength of their associated Dirichlet distributions.
Then substituting (41)-(44) into (40), we obtain

q(S, L)
% Ht 1 aStStJrl Ht 1 Stlt (ztlestlt)
The optimizedq(S, L) becomes
T—-1
(S L a’:tst_H Hcstlt xt|08tlz (46)

t=1 t=1

with the normalizing constant yielding a probability density. Comparing with (2), we notice that
Z =q(X|®") (47)

is the approximate likelihood of the optimized modgl, which can be computed efficiently by
the forward-backward algorithm [12].

Convergence

The variational Bayes approach is a generalization of the conventional EM algorithm [12],
[13]. Each iteration guarantees to increase the negative free energy or leave it unchanged, until it
converges to a local maximum. The negative free energy is an important quantity to approximate

the marginal likelihood, with this critical in model selection and density estimation [6]. We
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terminate the algorithm when the change in the negative free energy is negligibly small, and this

guantity can be calculated by substituting (46)-(48) into (39)

F(q) = F(q(S, L)) — KL(q(®)||p(®))
= logq(X|®") — K Lpi(q(7)||p(7)) — K Lpir(q(A)|Ip(A))
— K Lpir(q(C)|[p(C)) — K Lyw(q(0)][p(©)) (48)

where the KL divergence is between the variational posterior and the prior distribution. The KL
divergences of Dirichlet and Normal-Wishart distribution are discussed in the Appendix.
Computation of the predictive likelihood
For the classification task, the ultimate goal of Bayesian learning is to compute the pre-
dictive likelihood. In the Bayesian framework, the predictive likelihood of a test sequence
x = (z1,--- ,z7), given a set of training datd);, is obtained by averaging over all models

and weighting each model by its posterior:

p(|Dy) = / p(|®)p(®| D)) dd (49)

The true posterior is unknown. However, we may approximate it with a variational posterior

resulting from the VB. The approximate predictive likelihood can therefore be expressed as

p(@|D) ~ / p(|)q(®)dd

-/ > H s L] eoveen @l0e) - a(r)a(A)a(C)a(©)drd AdCdO
= t=1

=¥ / meq(m / j]j[:a5t5t+lq(A)dA- / f[lcstltq(C)dC- / ﬁf(xtlestlt)Q(@)d@

S,L L
= Z E(ﬂ—st) B <1:[ a5t8t+1> B (H Csxlt> B (H f(xt|08tlt)>] (50)
S,L L t=1 t=1 t=1

Although it can be expressed analytically, this quantity is still intractable since the states, mixture
component indicators and model parameters are coupled together. An approximation to this
guantity is to assume that the states, indicators and model parameters are independent of each

other,

p(alD) ~ Y

S,L

T—1 T
E(ﬂ—sl) . H E(a‘stst+1 H E Cstlt : $t|95tlt))] (51)
t=1 t=1
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where

E(T['Sl) = 7T51/7T07 E(astSH—l) = a5t3t+1/a5t07 E(Cstlt) = Cstlt/CStO

X "2 by, | et /2 (s, +1)/2)
E est \ — A 1 A tbt X tht 52
(f(@elfsun)) (msth T 1>> b & Dby [@ 2 T({agy + 1 d))2) 2
with
/\St t
Abstlt - Wi—l(mﬁlt — xt)(mstlt - xt)T (53)

The independence assumption resumes the first-order Markovian property. Thus, the (52) can
be evaluated efficiently by the forward-backward algorithm [12]. We notice that the approxima-
tion in (52) results in evaluating the integrand still at a single value of . However, this point

estimation is neither the maximum likelihood nor the maximarposteriori estimation.

I1l. ACTIVE LEARNING WITH CONTINUOUSHIDDEN MARKOV MODELS

Learning may be more effective if the learner can actively participate in the learning process
(i.e., in selection of the labeled data). Compared to conventional supervised learning, in which
the learner “passively” receives the labeled data and generates a learned model, in active learning
we start with a small set of labeled data, and identify those unlabeled examples that would be
most informative if the associated label were available; the labels redeemed to be informative are
subsequently queried (acquired). Such a setting is critical in machine learning tasks for which
acquiring labels is expensive or time consuming, and therefore we prioritize those items for
labeling that are most informative.

Active learning has been a focus of significant research for many years. It has demonstrated
success in a wide range of learning models, such as: naive Bayes [7], [15], the SVM [16], and in
neural networks [8]. Depending on the data source, the active learning settings can be classified
in two broad categorieqool-based active learninfy], [15], [17]-[19] andmembership queries
[8], [9]. In pool-based active learninghe learner is provided with a fixed pool of unlabeled
data and the learner is only allowed to choose data from the pool, and request the label. In
membership querieghe learner has the control to construct the data in the data space and
request the label. In the task of sequential data classification, such as the HMMs, a large pool of
unlabeled sequential data is often available. Thus, we only focus on pool-based active learning.

To our knowledge, there are very few previous studies on active learning focused on HMMs.
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As indicated above, the general idea in active learning is to choose that unlabeled sample that
would be most informative if the associated label were made available for training. In terms
of measuring informativeness, the algorithms can be classified am@itit measureand an
explicit measurd19]. In the context ofexplicit measureCohn [9] states that if the learner is
unbiased, the informativeness of an example can be assessed by the expected decrease in the
overall variance of the model’s prediction. Similarly, within a Bayesian framework, MacKay [8]
attempts to measure the information that can be gained about the unknown target hypothesis
using new labeled data. An explicit method requires a closed form calculation on the learner’s
variance on the target hypothesis, which is only available for simple learning schemes, such
as locally weighted regression [9], or based on various approximations which may undermine
the precision of this method [8]. The alternative is to measure the informativeness implicitly
by computing the model’s variance on classifying the data considered. The query by committee
(QBC) method [7], [17]-[19] falls in the framework of thenplicit measure In this method
the classification variance is estimated by computing the classification uncertainty with respect
to the entire space of possible models consistent with the training data. The three algorithms
we present in this paper are QBC, the maximum expected information gain method (MEIG)
and an error-reduction-based method. We show that with the posterior density of the model
parameters obtained via VB, both the implicit measure and explicit measure of informativeness
can be calculated efficiently. New aspects of this work include consideration of sequential data,
modeled via an HMM. Further, the variational form of HMM training plays a key role in

implementing the active-learning algorithms.

A. Query By Committee

The QBC algorithm is formulated and analyzed in [17], [18]. This algorithm is based on a
theoretical result stating that by halving the version space after each query, the generalization
error decreases exponentially. The version space is a subset of hypotheses that is consistent with
the labeled training data. In a binary case, this method randomly samples the version space and
induces an even number of classifiers (committee). The label of an unlabeled data is requested
whenever a voting between the classifiers on the unlabeled data results in a tie. This algorithm,
originally designed for the binary case, has been extended to the probabilistic model in [7], [19],

which inspires the VB implementation of the QBC presented here.
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In the framework of QBC, the informativeness of an example is measured by computing the
classification variance with respect to the entire space of possible models consistent with the
training data thus far. However, estimation with respect to the entire model space requires vast
computation resource. Thus, the QBC algorithm approximates the entire space by randomly
sampling the model-parameter distribution that resulted from the training data. These randomly
selected models serve as a “committee” of classifiers to classify each unlabeled example. The
classification variance is measured by computing the disagreement over their classifications. The
data with the strongest disagreement among the committee are selected for labeling. In [7], the
degree of disagreement is measured via the KL divergence, measuring the average distance of
the class posterior density resulting from each committee member to the their mean value.

An obvious method to generate the committee members is by exploiting the local-maxima
property of the conventional HMM EM training algorithm [12]. That is, by starting the EM
algorithm with different initial guesses, ML estimation can converge to an ensemble of different
local maximas, forming a committee. However, this method has several disadvantages. First, it
needs to learn the model multiple times to form the committee. Second, some ML estimations
may converge to the same or similar local maximum, undermining committee diversity. However,
with the posterior density of the model parameters obtained via the VB, this problem can be
solved simply by random sampling from the posterior density of the model parameters obtained
from VB learning (discussed in Sec. II).

Let * be an unlabeled data sequence whose informativeness we want to evaluate, with its

unknown class label* € {1,---,C}. With VB learning, the posterior density of all model
parameters\ = {®! ... &} can be induced from the labeled data = {D},---, D¢},
where A consists of model parameters of each clagse {1,---,C}, D! — @' In other

words,p(A|D;) represents the posterior probability dfgiven the training datd),. We can then
randomly samplep(A|D;) M times to generate a committee of classifiers withmembers:
5\1, cee ,XM. The degree of disagreement with regard to an unlabeledagfatan be evaluated
by the KL divergence [7],

M
* 1 * * N\ * *
score(x*) = i E KL (p(y 2%, M) [[Pavg (| )) (54)
m=1

Wherep(y*|m*,5\m) is the class posterior of unlabeled data with regard to themth com-

mittee member, ang,.,(y*|z*) = & SN | p(y*|x*, A.). By Bayes’ rulep(y*|z*, A,,) can be
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calculated as:

(55)

Wherep(m*\ﬂfg) can be calculated via the forward-backward algorithm [12], afid) is the
class prior, which can be estimated directly from the labeled data (or we can just assume a

non-informative prior).

B. Maximum Expected Information Gain (MEIG)

Within a Bayesian framework, MacKay [8] attempts to measure the information that can be
gained about the unknown target hypothesis using a new labeled data. Thus, the informativeness
of a new labeled data can be accessed analytically. In pool-based active learning, we may view
this active learning setting as an information extraction process: we select the data that gives
us maximum information about the pool. As we only select one most-informative data each
time, the maximum expected information gain (MEIG) approach becomes a greedy (myopic)
algorithm.

Let * be an unlabeled data sequence, its class labet {1,---,C}. With VB learning
the posterior density of all parameteks= {®!,.-. ,®“} is estimated from the labeled data
D, = {D},---,Df}, where X\ consists of model parameters of each clagsg {1,---,C},

D! — @' In other words,p(A\|D;) dictates the posterior probability of given the training
dataD,. Then, information gain after augmenting an unlabeled data into the training set can be
expressed in the context of information theory: how much information aka#n be obtained

if we add an unlabeled data into the training set? Since the classJalml x* is unknown,

it is treated as a random variable whose probability can be estimated from the training data.
The information gain of an unlabeled data can be expressed as the mutual information (Ml)
between the random variablke and y*, and consequently we call this method the maximum

mutual information (MMI).

C
G(x") = I(Xy*)=HAID) > HAD,z",y")p(y’|lz*, D))

y=1

DY) = H(© DY @' ,y") | ply'la", D) (56)

= i— [H(@y*
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where p(y*|x*, D;) is the class posterior of* given the training datd),, and the expression

representd? () Shannon entropy [20]. By Bayes’ rule,

“lg*. D)) = p(w*|D?*)p(*y*)
Pl D = e e DY ()

wherep(x*|, D;‘/*) is the predictive probability of* given the training data? , which can be

(57)

calculated from (52), angd(y*) is the class prior that can be estimated directly from the labeled
data (or we can just assume a non-informative prior).

In addition to the mutual information, another information measure we consider is the KL
divergence between the posterior density of model paranietebtained after augmenting an

unlabeled data into the training set and before the augmentation:

DY)| ply*|z*, Dy) (58)

C
lat) = 3 KL [p@” DY 2" y) [p(@”

yr=1

When we use the KL divergence as the measure of information gain, we call this method
the maximum KL divergence (MKL). The MI measure only seeks the labels to most shrink
the model variance while the KL measure seeks labels that can most shrink or expand (i.e.,
change) the model variance. Thus, the information gain of the KL measure is defined in terms
of the possible change in the model variance, which may be more appropriate for active learning;
since the previous estimation of the model may be biased, only minimizing the variance is not
correct. In Sec. IV we validate this idea using synthetic and measured data. The equations for the
entropy and KL divergence of Dirichlet and Normal-Wishart distributions can be obtained from
the Appendix. We note that this active-learning methodology attempts to reduce uncertainty on

the model parameters, which does not necessarily translate to classification performance.

C. Error-Reduction-Based Active Learning

The ultimate goal of active learning is to achieve the lowest expected error on future test data,
with the fewest possible labeling queries. Toward this criterion, the active learner should select
the data sample that once incorporated into training will result in the lowest expected error on
the set of testing samples. The method follows the general bias and variance decomposition of
prediction error [9], [21].

Let p(x,y) be the unknown joint distribution over input and labely, and p(x) be the

(known, at least approximately) input distribution #f The goal of the learner is to estimate



17

p(ylz) from a labeled training seb, = {(x1,v1), -,z u)}, vi € [1,---,C]. We denote the
learner’s prediction on an unlabeled datajiven training setD, asy(x; D,), which is a random
variable due to the randomnesspflictated byp(y|x) and randomness of learning algorithm
on D, dictated byp(y|x, D;). By usingp(y|x) we are allowing possible label noise in the data.

The error of the learner over the input distribution can be expressed as

Error = /ET [)(x; D)) — y(x)]” p()de (59)

where Er[-] denotes expectation oveXy|x) and overp(y|x, D;). The expectation inside the

integration may be decomposed as [9], [21]

Erlj(z; D) —y(x))* = Ely(x) — E(y|z)]® + [Ep,(4(x; D)) — E(y|x)]?
+ Ep, [§(z; Di) — Ep, (j(z; Dy))]” (60)

The first term in (62) is the noise in the distribution, which does not depend on the learner
or on the training data, and represents the minimal error of an ideal learner can achieve. The
second term is the learner’s squared bias, and the third is the learner’s variance; these last two
terms comprise the mean squared error of the learner. If we assume that the data set is noiseless
and the learner is unbiased, then the first and second terms in (62) vanish and the error only

depends on the learner’s variance,
Error ~ /EDl [i(x; D)) — Ep,(9(z; D)) p(x)da (61)
This equation motivates the use of a new function
Error =~ /H(g)|w,Dl)p(m)da: (62)

where H (y|x, D;) is the uncertainty (entropy) in the classifier given labeled datand sample

x. We then obtain a similar expression as in [15] if the entropy is substituted by the log loss
function. However, we should point out a significant difference between them: in(i&, D;)

is approximated by the prediction of a single classifier induced fiognwhile in a rigorous
sense, this quantity should be an averaged valuBP,onhich may be calculated by averaging all

the predictions of an ensemble of classifiers induced ffgmin the framework of VB learning,

this quantity can be calculated by (59), i.e., the VB algorithm yields an ensemble of classifiers

y(x; D;), allowing computation of the entropsf (y|x, D;).
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To actively select the data, we may need to calculateettpectederror of the learner after
adding an unlabeled date? into D;, and select the one that has the minimal expected error to

query the label:

C
B@) = [ 3 HGle.Dua’ " ply'la" Dipla)ida (63)

The expectation is over the predicted lahgl since the true label of the unlabeled data is

unknown.

D. Interpretation and Connections

The error-reduction-based active learning selects the unlabeled data that has the minimal
expected error for querying (defined in terms of the expected entropy in the classifier output
y(x; Dy)). This is equivalent to choosing the unlabeled data that gives the maximum information
about the labels of the testing set. Expressed in terms of information theory, the information
gain is the mutual information between all the predicted labélsf the testing data and the

predicted label/* of unlabeled data:*:
C

I(V;y) = /(H(?)Iw,Dz)—ZH(?le,Dz,w*,y*)p(y*!w*,Dz)) -p(x)da

- / (|2 y'e") - pla)dae (64)

Similar to the KL-based measure discussed above, we can also evaluate the information gain

by using the KL divergence instead of using the mutual information. This is expressed as

c
I'(Y;y*)Z/ (Z KL(p(?ﬂw,Dz,w*,y*)llp(ﬁlw,Dz))-p(y*|w*,Dz)> -p(x)de  (65)

Now consider the active learning procedure. First, we select an unlabelea‘datal acquire
its label y*; then, (x*,y*) is added intoD, to induce the refined model parameterof the
classifier; finally, this model is applied to predict the class laBélsf all the testing data.
This procedure forms a first order Markov chain with— X — Y. By the Data Processing
Inequality [20], we observe that

Iy > I(Ysy) (66)

This inequality shows thak(X; y*) is an upper bound oii(Y; *), and maximizingl (X; y*)

doesn’t necessarily increai(af/; y*). Thus, toward the criterion of minimizing the expected error
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on the test data, the MEIG, which maximiz&8\; y*), is less desirable compared with active
learning that directly maximize#(Y'; y*). However, as we can see from the implementation of
these two algorithms, computation ﬁ(?;y*) may be intractable since it requires re-training

the classifier for each unlabeled data once, and for each unlabeled data it requires to re-test on
all the remaining unlabeled data. While the MEIG algorithm only requires re-training on each
unlabeled data once, the estimation of the prediction error is alternatively replaced by calculating
the variance of the model parameters. After practical implementation, we notice that even for
the MEIG, its computational burden may be still high. In this case, the QBC algorithm appears
as a simplified algorithm that measures the informativeness of an unlabeled data by calculating
its classification variance among a set of classifiers. Neither re-training nor re-testing is required
in the QBC.

IV. EXPERIMENTAL RESULTS

We demonstrate the VB HMM and its extension to active learning, considering synthetic
and measured data. For the synthetic data, the number of claséés=i$ and the data of
each class are generated by a 3-state HMM, with each state-dependent observation density
generated by two-dimensional single Gaussian distribution. A set of sequential data are generated
per class, with the sequence length of each data . This data set can be found at web site
http://www.ee.duke.edu/ ~Icarin/synthetic _data.zip

For the first experiment, we compare the classification performances of the ML and VB HMMs.
We randomly selectV, = 5 data sequences per class as the initial labeled data set. We then
sequentially select a random data sequence from the unlabeled data, acquire the associated label,
and then augment the labeled data. After each augment of the training data, the ML and VB
algorithms are used to retrain the HMMs, and the testing is applied on the remaining unlabeled
data. In this manner we compare ML and VB training as a function of the size of the labeled data
set. The average correct classification rates are calculated by averaging the correct classification
rates of the five classes. The experiment is repeated 50 times and the averaged results and the
standard deviations are shown in Figure 1. The results show that the VB consistently outperforms
the ML, especially for small sets of labeled data. With the initial training(8&t= 5), the ML
learning apparently overfits to the data and the classification performance is rather poor, while the

VB obtains greater tham5% improvement. As the training data set increases, the classification
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Fig. 1. Comparison of VB and ML learning. The horizontal axis indicates the number of additional (randomly selected) labeled
data added to the training set. The mean (lines) results are presented as well as a standard deviation (error bars), based on 50

runs of the random data selection.

results of both methods become closer. This is not surprising since as the size of training data
increases, the posterior density of model parameters becomes more sharply peaked around the
ML estimate. As a detail of the experiment implementation, the parameters of VB learning are
initialized by the ML point estimation. First, the ML learning is run to convergence, and then
the VB learning runs from that point in parameter space to convergence. In Figure 2, an example
learning curve of the VB is presented.

In the second experiment, we compare the classification performance of the active learning
algorithms. Three active learning methods are considered in the experiment. the QBC with
KL divergence (Sec. Ill.1), the MKL/MMI (Sec. Ill.2) and the error-reduction-based active
learning (Sec. 111.3). In addition, random selection of data for labeling is also included for
comparison. We randomly seledf; = 5 data sequences per class as the initial training data
set and incrementally actively select the other 100 data sequences sequentially (as in Figure
1, but now the additional labeled data are selected actively). The results on active learning are
shown in Figure 3 in which some curves are the average of the multiple realizations to address
the randomness of the algorithms. For example, the “random selection” results are averaged
over 50 trials; “QBC (KL)” results are averaged over 20 trials. The other curves are based on

one realization. For the purpose of comparison, one standard deviation of the “QBC (KL)” is
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Fig. 2. An example learning curve of the VB algorithm, for the results in Figure 1. The parameters of VB learning are

initialized by the ML point estimation.

also shown. All active-learning methods consistently outperform random selection. To achieve
the same correct classification rate, the active learning methods need much less labeled data
compared to the random selection. The MMI outperforms the QBC at the initial part of the
learning process (early queries), but underperforms the QBC at the later stages. This may be
because the MMI seeks the data sequence to shrink the model posterior, but discards the data
sequences that may expand the model posterior. However, this effect has been considered by
the MKL for the non-negative information measure of the KL divergence. We notice that the
classification performance of the MKL indeed outperforms that of the MMI. This may suggest
that the KL divergence is more appropriate for active learning compared to the MI measure.
Moreover, the MKL approaches the upper bound of one standard deviation of the QBC (KL).
Another notable comparison of the MKL to the error-reduction-based active learning is also
shown in the figure. Both of their classification performances are very similar. This may suggest
that without the model bias, maximizinf(\; y*) is similar to maximizingI (Y’; y*). In Figure

4, the maximum expected information gain of each query is plotted. The information extracted
at each query generally decreases exponentially. This characteristic may be useful to design the
stopping criterion. As the expected information gain approaches zero, we may stop the active

learning and declare that all the information in the data set has been absorbed; no additional
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Fig. 3. Comparison of active learning on synthetic data. The horizontal axis indicates the number of actively selected labeled
data added to the training set. The averaged results of the QBC are presented as well as a standard deviation (error bars), based

on 20 runs of the QBC. The averaged results of the random selection via the VB are also presented for comparison.

data sequences are deemed informative for subsequent labeling.

As the final experiment, we apply the active-learning algorithms to measured acoustic-scattering
data. In particular, we apply the HMMs to multi-aspect target classification. For the general
theory on multi-aspect target classification with HMMs, and a description of the data and targets,
interested readers should see [22]. The targets are five rotationally symmetric underwater scatters,
and therefore the scattering data is collected @@)r in a plane bisecting the target axis of
rotation. The data are sampled lif increments, in the far zone of the target (at radial distance
large with respect to the target). The features of the data are extracted using matching pursuits
[22] with feature-vector dimensionality 8. We generate the data sequence by sampling the target
every 5° with sequence length 5. The active data selection starts after we assume access to five
labeled data sequences for each target. Therefore, wehave data sequences as the initial
training data set and55 x 5unlabeled data sequence to which the active learning algorithms
are applied. We assume a 5-state continuous HMM with each observation density generated by
a mixture of two Gaussians. The results in Figure 5 are similar to that of the synthetic data,
except that in this real data, the MMI outperforms the MKL. This may due to the bias of the
model, since the model we selected to fit the real data may deviate from the true model. Again,

the error-reduction-based active learning approaches the one-standard deviation upper bound of
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Fig. 4. The maximum expected information gain of every data query, computed for MKL (corresponding to the MKL results
shown in Figure 3). The horizontal axis indicates the number of actively selected labeled data added to the training set, and the

vertical axis shows the maximum information that can be extracted by each query.

the QBC. The MMI is close to the error-based active learning at the first half of the learning

process (early queries), but deteriorates subsequently (when later samples are queried).

V. CONCLUSION

We have presented \ariational Bayes(VB) learning algorithm for continuous HMMs, and
demonstrate that the VB has the advantage of not overfitting small sets of labeled data, which
often happens in maximum likelihood(ML) learning. More significantly, with the posterior
density of the model parameters approximated via the VB, the problem of active learning can be
solved in an effective manner. The query by committee (QBC) algorithm can be implemented by
directly sampling the posterior density of model parameters, to form a committee of classifiers,
while previously QBC typically required multiple ML re-trainings to form the committee. The
maximum expected information gain (MMI/MKL) algorithm has not been applied previously to
HMMs, and has been facilitated here by minimizing the posterior density of model parameters
obtained by the VB. Finally, active learning based on reducing expected classification error has
been implemented in a rigorous sense via VB learning. We have also interpreted the relationships
among these three algorithms in an information-theoretic context. The experiments on synthetic

and measured data demonstrate the significant improvement of the active learning compared
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Fig. 5. Comparison of active learning on measured data. The horizontal axis indicates the number of actively selected labeled
data added to the training set. The averaged results of the QBC are presented as well as a standard deviation (error bars), based

on 20 runs of the QBC. The averaged results of the random selection are also presented for comparison.

to random selection of labeled data. Moreover, the MMI/MKL outperforms the QBC, and the
MKL approaches one standard deviation of the upper bound of the QBC. Overall, the results
of the error-reduction-based active learning were the best considered. However, the computation
requirements of this approach may be infeasible compared to that of the MMI/MKL, which
can be computed with much less computational resources and yield results of only slightly less
quality. The future research on the active learning may focus on fast implementation of the
error-reduction-based active learning, and in approximating it by the MMI/MKL with a tighter

bound as expressed in (68).

APPENDIX

1. Dirichlet distribution

N

Dir(plv"‘ ,pN|U1,"' auN) HZ lr uz ZU (67)

where> " p; =1, u; > 0, andug = S~ | u, is the strength of the Dirichlet distribution.
1.1 KL divergence of Dirichlet distribution
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For two Dirichlet distributiong(p1, - - - ,pn) = Dir(p1, -+, py|us, -+ ,un) @andp(py, -+ ,py) =

Dir(pl’... ’pN"u//17 7u/]\/>1

Kool =g 22 43 o P S ) o) (69
2. Wishart distribution
p(R|a,b) = ! |R|(@=4=D/2 exp —lT'r’(bR) (69)
’ Z(a,b) 2
where ;
+1—
Z(a,b) = 71D/ 902 T 0 (=2 70
(a,b) = 7D [b/2] H 5 (70)
2.1 Moments of Wishart distribution
E(R) = ab™! (71)
L fa+1—i
E(log|R]) = —log|b/2!+2¢<T) (72)
=1
2.2 KL divergence of Wishart distribution
For two Wishart distributiong(R|a,b) andp(R|a’, V)
_a—d ad a 1 Z(a'0)
K Lyishart(q]lp) = 5 E(log|R|) 5 + 2Tr(bb ) + log Z(a,0) (73)
3. Normal-Wishart distribution
p(u, Rla,b,A,m) = W(R|a,b) - N(ulm,AR)
1 AN\ A
- - [ R(afd)/Q " . TR .
Zio (3e) 1R exp (=50 = ) Ru =
1
X exp <—§TT<bR)) (74)

where W(R|a, b) is the Wishart distribution with the degree of freedarmand the covariance
matrix b; N (u|m,AR) is the Normal distribution with the mean vector and the precision

matrix AR.
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3.1 Moments of Normal-Wishart distribution

E((ze — p)"R(zy — p)) = a(xy —m) b7 (2, — m) + d/A (75)

3.2 KL divergence of Normal-Wishart distribution

For two normal-wishart distributiong(s:, R|a, b, \,m) andp(u, R|a’, b/, X', m’)

KLyw(qllp) = / Q(MaR)IOg;EZ’gdﬂdR

q(Rla,b) / q(pm, AR)
= Rla,b)log ————dR Rla.,b AR)log ——————dudR
[ atFia.10s HEET R+ [ a(lo.batpim. AR tog SEE SRy
1 >‘ )‘, / NT 1.—1 /
= K Luyishart(q||p) + i(dlog N + dx —d+X(m-—m')ab " (m—m'")) (76)

3.3 Entropy of Normal-Wishart distribution

H = - / p(p, R)log p(u, R)dudR
d A —d A 1
= log Z(a,b) — 5 log o ¢ 5 E(log |R|) + §E ((p—m)"R(p—m)) + §Tr(bE(R))

d(d + 1) d d a+1—4i\ d d
— Tlogélw—l—é(a—l—l)—i-;l logF(T) —glog)\—ilog|b|
a—d a+1—1
— E _— 77
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